login
A257863
Expansion of 1/(1 - x - x^2 + x^5 - x^6).
1
1, 1, 2, 3, 5, 7, 12, 18, 29, 45, 72, 112, 178, 279, 441, 693, 1094, 1721, 2714, 4273, 6735, 10607, 16715, 26329, 41485, 65352, 102965, 162209, 255560, 402613, 634306, 999306, 1574368, 2480323, 3907638, 6156268, 9698906, 15280112, 24073063, 37925860, 59750293
OFFSET
0,3
COMMENTS
This sequence counts partially ordered partitions of (n) into parts (1,2,3,4) where only the position (order) of the 4's are important. The 4's behave like placeholders for the unordered 1's, 2's and 3's. (See example.)
FORMULA
G.f.: 1/(1-x-x^2+x^5-x^6).
a(n) = a(n-1) + a(n-2) - a(n-5) + a(n-6).
EXAMPLE
a(8)=29 These are (44),(341),(143),(431=413),(314=134),(422),(242),(224),(4211=4121=4112),(2114=1214=1124),(1421=1412),(2141=1241),(2411),(1142),(41111),(14111),(11411),(11141),(11114),(332=323=233),(3311=1133=1331=3113=1313=3131),(3221=twelve),(32111=twenty),(311111=six),(2222),(22211=ten),(221111=fifteen),(2111111=seven),(11111111)
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1] + a[n - 2] - a[n - 5] + a[n - 6], a[1] == 1, a[2] == 1, a[3] == 2, a[4] == 3, a[5] == 5, a[6] == 7}, a, {n, 43}] (* Michael De Vlieger, May 11 2015 *)
CoefficientList[Series[1/(1 - x - x^2 + x^5 - x^6), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 1, 0, 0, -1, 1}, {1, 1, 2, 3, 5, 7}, 50] (* Vincenzo Librandi, May 12 2015 *)
PROG
(Magma) [n le 6 select NumberOfPartitions(n-1) else Self(n-1)+Self(n-2)-Self(n-5)+Self(n-6): n in [1..50]]; // Vincenzo Librandi, May 12 2015
(Sage) m = 50; L.<x> = PowerSeriesRing(ZZ, m); f = 1/(1-x-x^2+x^5-x^6); print(f.coefficients()) # Bruno Berselli, May 12 2015
CROSSREFS
Sequence in context: A263358 A239915 A013983 * A169986 A218021 A137713
KEYWORD
nonn,easy
AUTHOR
David Neil McGrath, May 11 2015
STATUS
approved