login
A013982
Expansion of 1/(1-x^2-x^3-x^4-x^5).
3
1, 0, 1, 1, 2, 3, 4, 7, 10, 16, 24, 37, 57, 87, 134, 205, 315, 483, 741, 1137, 1744, 2676, 4105, 6298, 9662, 14823, 22741, 34888, 53524, 82114, 125976, 193267, 296502, 454881, 697859, 1070626, 1642509
OFFSET
0,5
COMMENTS
Number of compositions of n into parts p where 2 <= p < = 5. [Joerg Arndt, Jun 24 2013]
LINKS
FORMULA
a(n) = a(n-5) + a(n-4) + a(n-3) + a(n-2). - Jon E. Schoenfield, Aug 07 2006
MATHEMATICA
CoefficientList[Series[1/(1-x^2-x^3-x^4-x^5), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 1, 1, 1, 1}, {1, 0, 1, 1, 2}, 40] (* Harvey P. Dale, Sep 19 2011 *)
PROG
(PARI) Vec(1/(1-x^2-x^3-x^4-x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3-x^4-x^5))); // Vincenzo Librandi, Jun 24 2013
CROSSREFS
Sequence in context: A159288 A363958 A033320 * A202411 A293161 A235648
KEYWORD
nonn,easy
AUTHOR
STATUS
approved