login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013982 Expansion of 1/(1-x^2-x^3-x^4-x^5). 3
1, 0, 1, 1, 2, 3, 4, 7, 10, 16, 24, 37, 57, 87, 134, 205, 315, 483, 741, 1137, 1744, 2676, 4105, 6298, 9662, 14823, 22741, 34888, 53524, 82114, 125976, 193267, 296502, 454881, 697859, 1070626, 1642509 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Number of compositions of n into parts p where 2 <= p < = 5. [Joerg Arndt, Jun 24 2013]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

R. Mullen, On Determining Paint by Numbers Puzzles with Nonunique Solutions, JIS 12 (2009) 09.6.5

Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,1).

FORMULA

a(n) = a(n-5) + a(n-4) + a(n-3) + a(n-2). - Jon E. Schoenfield, Aug 07 2006

MATHEMATICA

CoefficientList[Series[1/(1-x^2-x^3-x^4-x^5), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 1, 1, 1, 1}, {1, 0, 1, 1, 2}, 40] (* Harvey P. Dale, Sep 19 2011 *)

PROG

(PARI) Vec(1/(1-x^2-x^3-x^4-x^5)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

(MAGMA) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^2-x^3-x^4-x^5))); // Vincenzo Librandi, Jun 24 2013

CROSSREFS

Sequence in context: A270659 A159288 A033320 * A202411 A293161 A235648

Adjacent sequences:  A013979 A013980 A013981 * A013983 A013984 A013985

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.