This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008677 Expansion of 1/((1-x^3)*(1-x^5)*(1-x^7)). 2
 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 14, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS Number of partitions of n into parts 3, 5, and 7. - Joerg Arndt, Aug 17 2013 Number of different total numbers of kicks, tries and converted tries which lead to a score of n in a rugby (union) match. - Matthew Scroggs, Jul 09 2015 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 114, [6t]. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 230 M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7. Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,1,-1,0,-1,0,-1,0,0,1). FORMULA a(n) = a(n-3)+a(n-5)+a(n-7)-a(n-8)-a(n-10)-a(n-12)+a(n-15) for n>=15. - David Neil McGrath, Sep 03 2014 G.f.: 1 / ((1 - x^3) * (1 - x^5) * (1 - x^7)). Euler transform of length 7 sequence [ 0, 0, 1, 0, 1, 0, 1]. - Michael Somos, Sep 30 2014 a(n) = a(-15-n) for all n in Z. - Michael Somos, Sep 30 2014 0 = a(n) - a(n+3) - a(n+5) + a(n+8) - [mod(n, 7) == 6] for all n in Z. - Michael Somos, Sep 30 2014 a(n) = round(n^2/210 + n/14 + 5/21) + r(n) where r(n) = 1 if n == 0, 3, 10, 15, 45, 75, 80, 87, or 90 mod 105, r(n) = -1 if n == 4, 11, 16, 44, 46, 74, 79 or 86 mod 105, r(n) = 0 otherwise. - Robert Israel, Jul 09 2015 EXAMPLE G.f. = 1 + x^3 + x^5 + x^6 + x^7 + x^8 + x^9 + 2*x^10 + x^11 + 2*x^12 + ... MAPLE S:= series(1 / ((1 - x^3) * (1 - x^5) * (1 - x^7)), x, 101): seq(coeff(S, x, j), j=0..100); # Robert Israel, Jul 09 2015 MATHEMATICA CoefficientList[Series[1 / ((1 - x^3) (1 - x^5) (1 - x^7)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *) PROG (PARI) a(n)=[1, 0, -2, 2, -2, 0, 1][n%7+1]/7+[2, -1, 0, 0, -1][n%5+1]/5+[2, -1, -1][n%3+1]/9+(3*n^2+45*n+148)/630; \\ Tani Akinari, Aug 17 2013 (PARI) a(n)=floor((n^2+15*n+86)/210+(n%3<1)/3+3*(n%5<1)/5) \\ Tani Akinari, Sep 30 2014 CROSSREFS Sequence in context: A218469 A230502 A280253 * A036497 A211976 A035460 Adjacent sequences:  A008674 A008675 A008676 * A008678 A008679 A008680 KEYWORD nonn,easy AUTHOR EXTENSIONS Typo in name fixed by Vincenzo Librandi, Jun 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 04:02 EDT 2019. Contains 323473 sequences. (Running on oeis4.)