login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008677 Expansion of 1/((1-x^3)*(1-x^5)*(1-x^7)). 2
1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 14, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 24, 24, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

Number of partitions of n into parts 3, 5, and 7. - Joerg Arndt, Aug 17 2013

Number of different total numbers of kicks, tries and converted tries which lead to a score of n in a rugby (union) match. - Matthew Scroggs, Jul 09 2015

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 114, [6t].

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 230

M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.

Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,1,-1,0,-1,0,-1,0,0,1).

FORMULA

a(n) = a(n-3)+a(n-5)+a(n-7)-a(n-8)-a(n-10)-a(n-12)+a(n-15) for n>=15. - David Neil McGrath, Sep 03 2014

G.f.: 1 / ((1 - x^3) * (1 - x^5) * (1 - x^7)).

Euler transform of length 7 sequence [ 0, 0, 1, 0, 1, 0, 1]. - Michael Somos, Sep 30 2014

a(n) = a(-15-n) for all n in Z. - Michael Somos, Sep 30 2014

0 = a(n) - a(n+3) - a(n+5) + a(n+8) - [mod(n, 7) == 6] for all n in Z. - Michael Somos, Sep 30 2014

a(n) = round(n^2/210 + n/14 + 5/21) + r(n) where r(n) = 1 if n == 0, 3, 10, 15, 45, 75, 80, 87, or 90 mod 105, r(n) = -1 if n == 4, 11, 16, 44, 46, 74, 79 or 86 mod 105, r(n) = 0 otherwise. - Robert Israel, Jul 09 2015

EXAMPLE

G.f. = 1 + x^3 + x^5 + x^6 + x^7 + x^8 + x^9 + 2*x^10 + x^11 + 2*x^12 + ...

MAPLE

S:= series(1 / ((1 - x^3) * (1 - x^5) * (1 - x^7)), x, 101):

seq(coeff(S, x, j), j=0..100); # Robert Israel, Jul 09 2015

MATHEMATICA

CoefficientList[Series[1 / ((1 - x^3) (1 - x^5) (1 - x^7)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *)

PROG

(PARI) a(n)=[1, 0, -2, 2, -2, 0, 1][n%7+1]/7+[2, -1, 0, 0, -1][n%5+1]/5+[2, -1, -1][n%3+1]/9+(3*n^2+45*n+148)/630; \\ Tani Akinari, Aug 17 2013

(PARI) a(n)=floor((n^2+15*n+86)/210+(n%3<1)/3+3*(n%5<1)/5) \\ Tani Akinari, Sep 30 2014

CROSSREFS

Sequence in context: A218469 A230502 A280253 * A036497 A211976 A035460

Adjacent sequences:  A008674 A008675 A008676 * A008678 A008679 A008680

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Typo in name fixed by Vincenzo Librandi, Jun 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 03:33 EST 2018. Contains 317224 sequences. (Running on oeis4.)