This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008680 Expansion of 1/(1-x^3 )(1-x^4 )(1-x^5 ). 0
 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 22, 23, 25, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 228 FORMULA Euler transform of length 5 sequence [ 0, 0, 1, 1, 1]. - Michael Somos Aug 13 2007 G.f.: 1/( (1-x^3)* (1-x^4)* (1-x^5)). a(-12-n)= a(n). - Michael Somos Aug 13 2007 MAPLE a:= proc(n) local m, r; m:= iquo (n, 60, 'r'); r:= r+1; (5+r+30*m)*m+ [1, 0\$2, 1\$5, 2\$4, 3\$3, 4\$3, 5\$2, 6\$3, 7, 8\$3, 9, 10\$2, 11\$2, 12, 13\$2, 14, 15\$2, 16, 17, 18\$2, 19, 20, 21, 22\$2, 23, 25, i\$i=25..35][r] end: seq (a(n), n=0..100); [From Alois P. Heinz, Oct 06 2008] MATHEMATICA CoefficientList[Series[1/((1-x^3)(1-x^4)(1-x^5)), {x, 0, 80}], x] (* From Harvey P. Dale, Apr 29 2011 *) PROG (PARI) {a(n)= if(n<0, n=-12-n); polcoeff(1/ (1-x^3)/ (1-x^4)/ (1-x^5) +x*O(x^n), n)} /* Michael Somos Aug 13 2007 */ CROSSREFS Sequence in context: A029917 A062300 A086916 * A120203 A029280 A060971 Adjacent sequences:  A008677 A008678 A008679 * A008681 A008682 A008683 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .