login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008676 Expansion of 1/((1-x^3)*(1-x^5)). 4
1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,16

COMMENTS

a(n) gives the number of partitions of n using only the parts 3 and 5.  e.g. a(25)=2: 5+5+5+5+5 and 5+5+3+3+3+3+3+3. - Andrew Baxter, Jun 20 2011

a(n) gives the number of partitions of n+8 involving both a 3 and a 5. e.g. a(25)=2 and we may write 33 as 5+5+5+5+5+5+3 and 5+5+5+3+3+3+3+3+3. 11*3 doesn't count as no 5 is involved. - Jon Perry, Jul 03 2004

Conjecture: a(n) = Floor(2*(n + 3)/3) - Floor(3*(n + 3)/5). - John W. Layman, Sep 23 2009

Also, it appears that a(n) gives the number of distinct multisets of n-1 integers, each of which is -2, +3, or +4, such that the sum of the members of each multiset is 2. E.g., for n=5, the multiset {-2,-2,3,3}, and no others, of n-1=4 members, sums to 2, so a(5)=1. - John W. Layman, Sep 23 2009

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 217

Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,0,-1).

FORMULA

G.f.: 1/( (1-x^3) * (1-x^5) ).

a(n) = a(n-3) + a(n-5) - a(n-8), a(0)=a(3)=a(5)=a(6)=1, a(1)=a(2)=a(4) =a(6)=a(7)=0.

a(n) = floor((2*n+5)/5) - floor((n+2)/3). - Tani Akinari, Aug 07 2013

MAPLE

a := proc (n) option remember; if n < 0 then return 0 elif n = 0 then return 1 else return a(n-3)+a(n-5)-a(n-8) end if end proc

MATHEMATICA

CoefficientList[Series[1/((1-x^3)(1-x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *)

PROG

(PARI) Vec(O(x^99)+1/(1-x^3)/(1-x^5)) \\ Charles R Greathouse IV, Jun 20 2011

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^3)*(1-x^5)) )); // G. C. Greubel, Sep 08 2019

(Sage)

def A008676_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P(1/((1-x^3)*(1-x^5))).list()

A008676_list(100) # G. C. Greubel, Sep 08 2019

(GAP) a:=[1, 0, 0, 1, 0, 1, 1, 0];; for n in [9..100] do a[n]:=a[n-3]+a[n-5]-a[n-8]; od; a; # G. C. Greubel, Sep 08 2019

CROSSREFS

Cf. A103221.

Sequence in context: A006928 A087890 A245077 * A025893 A296977 A025878

Adjacent sequences:  A008673 A008674 A008675 * A008677 A008678 A008679

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by Andrew Baxter, Jun 20, 2011

Typo in name fixed by Vincenzo Librandi, Jun 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 12:47 EDT 2020. Contains 334840 sequences. (Running on oeis4.)