The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008676 Expansion of 1/((1-x^3)*(1-x^5)). 4
 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,16 COMMENTS a(n) gives the number of partitions of n using only the parts 3 and 5.  e.g. a(25)=2: 5+5+5+5+5 and 5+5+3+3+3+3+3+3. - Andrew Baxter, Jun 20 2011 a(n) gives the number of partitions of n+8 involving both a 3 and a 5. e.g. a(25)=2 and we may write 33 as 5+5+5+5+5+5+3 and 5+5+5+3+3+3+3+3+3. 11*3 doesn't count as no 5 is involved. - Jon Perry, Jul 03 2004 Conjecture: a(n) = Floor(2*(n + 3)/3) - Floor(3*(n + 3)/5). - John W. Layman, Sep 23 2009 Also, it appears that a(n) gives the number of distinct multisets of n-1 integers, each of which is -2, +3, or +4, such that the sum of the members of each multiset is 2. E.g., for n=5, the multiset {-2,-2,3,3}, and no others, of n-1=4 members, sums to 2, so a(5)=1. - John W. Layman, Sep 23 2009 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 217 Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,0,-1). FORMULA G.f.: 1/( (1-x^3) * (1-x^5) ). a(n) = a(n-3) + a(n-5) - a(n-8), a(0)=a(3)=a(5)=a(6)=1, a(1)=a(2)=a(4) =a(6)=a(7)=0. a(n) = floor((2*n+5)/5) - floor((n+2)/3). - Tani Akinari, Aug 07 2013 MAPLE a := proc (n) option remember; if n < 0 then return 0 elif n = 0 then return 1 else return a(n-3)+a(n-5)-a(n-8) end if end proc MATHEMATICA CoefficientList[Series[1/((1-x^3)(1-x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *) PROG (PARI) Vec(O(x^99)+1/(1-x^3)/(1-x^5)) \\ Charles R Greathouse IV, Jun 20 2011 (MAGMA) R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^3)*(1-x^5)) )); // G. C. Greubel, Sep 08 2019 (Sage) def A008676_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P(1/((1-x^3)*(1-x^5))).list() A008676_list(100) # G. C. Greubel, Sep 08 2019 (GAP) a:=[1, 0, 0, 1, 0, 1, 1, 0];; for n in [9..100] do a[n]:=a[n-3]+a[n-5]-a[n-8]; od; a; # G. C. Greubel, Sep 08 2019 CROSSREFS Cf. A103221. Sequence in context: A006928 A087890 A245077 * A025893 A296977 A025878 Adjacent sequences:  A008673 A008674 A008675 * A008677 A008678 A008679 KEYWORD nonn,easy AUTHOR EXTENSIONS Edited by Andrew Baxter, Jun 20, 2011 Typo in name fixed by Vincenzo Librandi, Jun 23 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 12:47 EDT 2020. Contains 334840 sequences. (Running on oeis4.)