OFFSET
1,1
COMMENTS
Numbers k > 9 with following property: form a sequence {b(i)} whose initial terms are the t digits of k, later terms given by rule that b(i) = sum of t previous terms; then k itself appears in the sequence.
Called Sep-Numbers by Baumann (2004). - N. J. A. Sloane, Mar 02 2014
Sometimes named after the American mathematician, software engineer and author Mike Keith (b. 1955), who introduced them in 1987 as "repfigit numbers". - Amiram Eldar, Jun 27 2021
REFERENCES
Charles Ashbacher, J. Rec. Math., Vol. 21, No. 4 (1989), p. 310.
Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 197, p. 59, Ellipses, Paris 2008.
Mike Keith, Repfigit Numbers, J. Recreational Math., Vol. 19, No. 2 (1987), pp. 41-42.
Clifford A. Pickover, All Known Replicating Fibonacci Digits Less Than One Billion, J. Recreational Math., Vol. 22, No. 3, p. 176, 1990.
Clifford A. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 229.
Clifford A. Pickover, Wonders of Numbers, "Looping Replicating Fibonacci digits", pp. 174-5, OUP 2000.
K. Sherriff, Computing Replicating Fibonacci Digits, J. Recreational Math., Vol. 26, No. 3, p. 191, 1994.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, see p. 71.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..94 [Taken from first Keith link below.]
Rüdeger Baumann, Sep-Zahlen or Sep-Numbers, DERIVE Newsletter, #53 (2004), p. 33.
Jhon J. Bravo, Sergio Guzmán, and Florian Luca, Repdigit Keith numbers, Lithuanian Mathematical Journal, Vol. 53, No. 2 (April 2013), pp. 143-148.
Edmund Copeland and Brady Haran, Keith Numbers, Numberphile video (2012).
Mike Keith, Keith numbers.
Mike Keith, Determination of All Keith Numbers Up to 10^19.
Mike Keith, Power-sum numbers, J. Recreational Mathematics, Vol. 18, No. 4 (1986), pp. 275-278. (Annotated scanned copy)
Martin Klazar and Florian Luca, Counting Keith numbers, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.2.
Madras Math's Amazing Number Facts, Repfigits.
Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review.
Eric Weisstein's World of Mathematics, Keith Number.
Wikipedia, Keith number.
EXAMPLE
197 is a term since sequence {b(i)} (see Comments) is A186830 = { 1, 9, 7, 17, 33, 57, 107, 197, ... }, which contains 197.
MAPLE
isA007629 := proc(n)
local L, t, a ;
if n < 10 then
return false;
end if;
L := ListTools[Reverse](convert(n, base, 10)) ;
t := nops(L) ;
while true do
a := add(op(-i, L), i=1..t) ;
L := [op(L), a] ;
if a > n then
return false;
elif a = n then
return true;
end if;
end do:
end proc:
for n from 1 do
if isA007629(n) then
printf("%d, \n", n);
end if;
end do: # R. J. Mathar, Jan 12 2016
MATHEMATICA
keithQ[n_Integer] := Module[{b = IntegerDigits[n], s, k = 0}, s = Total[b]; While[s < n, AppendTo[b, s]; k++; s = 2*s - b[[k]]]; s == n]; Select[Range[10, 100000], keithQ] (* T. D. Noe, Mar 15 2011 *)
nxt[n_]:=Rest[Flatten[Join[{n, Total[n]}]]]; repfigitQ[m_]:=MemberQ[ NestWhileList[ nxt, IntegerDigits[m], Max[#]<=m&][[All, -1]], m]; Select[ Range[10, 45*10^6], repfigitQ] (* Harvey P. Dale, Sep 02 2016 *)
keithQ[n_, e_] := Last[NestWhile[Rest[Append[#, Apply[Plus, #]]]&, IntegerDigits[n^e], Last[#]<n&]]==n/; n>9
a007629[n_] := Select[Range[10, n], keithQ[#, 1]&]
a007629[45*10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
PROG
(Haskell)
import Data.Char (digitToInt)
a007629 n = a007629_list !! (n-1)
a007629_list = filter isKeith [10..] where
isKeith n = repfigit $ reverse $ map digitToInt $ show n where
repfigit ns = s == n || s < n && (repfigit $ s : init ns) where
s = sum ns
-- Reinhard Zumkeller, Nov 04 2010, Mar 31 2011
(PARI) is(n)=if(n<14, return(0)); my(v=digits(n), t=#v); while(v[#v]<n, v=concat(v, sum(i=0, t-1, v[#v-i]))); v[#v]==n \\ Charles R Greathouse IV, Feb 01 2013
(Python)
A007629_list = []
for n in range(10, 10**9):
x = [int(d) for d in str(n)]
y = sum(x)
while y < n:
x, y = x[1:]+[y], 2*y-x[0]
if y == n:
A007629_list.append(n) # Chai Wah Wu, Sep 12 2014
CROSSREFS
KEYWORD
nonn,base,nice
EXTENSIONS
12th term corrected from 2508 to 2580, Aug 15 1997
More terms from Mike Keith, Feb 15 1999
Keith's old links fixed and C. Ashbacher's name added by Christopher Carl Heckman, Nov 18 2010
STATUS
approved