OFFSET
1,2
COMMENTS
Like Keith numbers but starting from n^3 digits to reach n.
Consider the digits of the cube of a number n . Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
EXAMPLE
776^3 = 467288576 :
4 + 6 + 7 + 2 + 8 + 8 + 5 + 7 + 6 = 53;
6 + 7 + 2 + 8 + 8 + 5 + 7 + 6 + 53 = 102;
7 + 2 + 8 + 8 + 5 + 7 + 6 + 53 + 102 = 198;
2 + 8 + 8 + 5 + 7 + 6 + 53 + 102 + 198 = 389;
8 + 8 + 5 + 7 + 6 + 53 + 102 + 198 + 389 = 776.
MAPLE
with(numtheory): P:=proc(q, h) local a, b, k, n, t, v; v:=array(1..h);
for n from 1 to q do b:=n^3; a:=[];
for k from 1 to ilog10(b)+1 do a:=[(b mod 10), op(a)]; b:=trunc(b/10); od;
for k from 1 to nops(a) do v[k]:=a[k]; od; b:=ilog10(n^3)+1;
t:=nops(a)+1; v[t]:=add(v[k], k=1..b); while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1);
od; if v[t]=n then print(n); fi; od; end: P(10^6, 10000);
MATHEMATICA
(* function keithQ[ ] is defined in A007629 *)
a274770[n_] := Join[{1, 8}, Select[Range[10, n], keithQ[#, 3]&]]
a274770[10^6] (* Hartmut F. W. Hoft, Jun 02 2021 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jul 06 2016
EXTENSIONS
a(34)-a(37) from Giovanni Resta, Jul 08 2016
STATUS
approved