This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263534 Consider the 10's complements mod 10 of the digits of a number k. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to k. 9
 29, 76, 157, 174, 191, 475, 713, 1129, 1961, 3286, 4424, 7812, 8973, 19978, 24317, 35845, 37041, 51712, 68022, 166838, 443275, 444247, 445219, 509439, 706317, 1189312, 1933197, 2686010, 10809303, 55558901, 58338037, 257990335, 504050156, 839186880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Like Keith numbers but using the ten's complements of their digits. a(35) > 10^9. - Robert Price, Apr 08 2019 LINKS EXAMPLE For 29, the 10's complements of its digits are 8, 1. Then:   8 + 1 = 9;   1 + 9 = 10;   9 + 10 = 19;   10 + 19 = 29. For 475, the 10's complements of its digits are 6, 3, 5. Then:   6 + 3 + 5 = 14;   3 + 5 + 14 = 22;   5 + 14 + 22 = 41;   14 + 22 + 41 = 77;   22 + 41 + 77 = 140;   41 + 77 + 140 = 258;   77 + 140 + 258 = 475. MAPLE with(numtheory): P:=proc(q, h) local a, b, c, k, n, t, v; v:=array(1..h); for n from 10 to q do b:=ilog10(n)+1; c:=n; a:=[]; for k from 1 to b do a:=[(10-c) mod 10, op(a)]; c:=trunc(c/10); od; for k from 1 to b do v[k]:=a[k]; od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t] 10 - d], Last@ # < n &, 1, 10^2] == n] @@ {IntegerLength@#, #} &] (* Michael De Vlieger, Mar 09 2018 *) CROSSREFS Cf. A007629. Sequence in context: A142305 A184072 A071110 * A273360 A176185 A044167 Adjacent sequences:  A263531 A263532 A263533 * A263535 A263536 A263537 KEYWORD nonn,base AUTHOR Paolo P. Lava, Oct 20 2015 EXTENSIONS Clarified name, corrected some terms and Maple code by Paolo P. Lava, Mar 08 2018 a(30)-a(32) from Robert Price, Apr 05 2019 a(33)-a(34) from Robert Price, Apr 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 00:29 EDT 2019. Contains 322446 sequences. (Running on oeis4.)