login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046459 Integers equal to the sum of the digits of their cubes. 12
0, 1, 8, 17, 18, 26, 27 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

This sequence was first found by the French mathematician Claude (Séraphin) Moret-Blanc in 1879. See Le Lionnais page 27 for the last number of this sequence: 27. [Bernard Schott, Dec 07 2012]

REFERENCES

Italo Ghersi, Matematica dilettevole e curiosa, pag. 115, Hoepli, Milano, 1967 [From Vincenzo Librandi, Jan 02 2009]

F. Le Lionnais, Les nombres remarquables, Hermann, 1983.

J. Roberts, Lure of the Integers, The Mathematical Association of America, 1992, p. 172.

LINKS

Table of n, a(n) for n=1..7.

Bernard Schott and Norbert Verdier, QDL 19: Quels beaux cubes ! (French mathematical forum les-mathematiques.net)

Eric Weisstein's World of Mathematics, Cubic Number.

EXAMPLE

a(3) = 8 because 8^3 = 512 and 5+1+2 = 8.

a(7) = 27 because 27^3 = 19683 and 1 + 9 + 6 + 8 + 3 = 27.

MATHEMATICA

Select[Range[0, 30], #==Total[IntegerDigits[#^3]]&] (* Harvey P. Dale, Dec 21 2014 *)

PROG

(MAGMA) [n: n in [0..100] | &+Intseq(n^3) eq n ]; // Vincenzo Librandi, Sep 16 2015

CROSSREFS

Cf. A004164, A055569, A055575, A055576, A055577.

Cf. A152147.

Sequence in context: A234839 A066554 A244537 * A274770 A075485 A217433

Adjacent sequences:  A046456 A046457 A046458 * A046460 A046461 A046462

KEYWORD

base,fini,full,nonn

AUTHOR

Patrick De Geest, Aug 15 1998

EXTENSIONS

Offset corrected by Arkadiusz Wesolowski, Aug 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 21 17:42 EDT 2017. Contains 290892 sequences.