login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241199
Numbers n such that 4 consecutive terms of binomial(n,k) satisfy a quadratic relation for 0 <= k <= n/2.
5
14, 19, 31, 38, 54, 63, 83, 94, 118, 131, 159, 174, 206, 223, 259, 278, 318, 339, 383, 406, 454, 479, 531, 558, 614, 643, 703, 734, 798, 831, 899, 934, 1006, 1043, 1119, 1158, 1238, 1279, 1363, 1406, 1494, 1539, 1631, 1678, 1774, 1823, 1923, 1974, 2078, 2131
OFFSET
1,1
COMMENTS
From Robert Israel, Apr 28 2015: (Start)
Numbers n >= 14 such that 3*n + 7 is a square.
This is because
C(n,i+3) - 3*C(n,i+2) + 3*C(n,i+1) - C(n,i) = n!/((n-i)!*(i+3)!) * g(n,i)
where g(n,i) = (n-3-2*i) * ((n-3-2*i)^2 - 3*n - 7). (End)
FORMULA
a(n) = (55-7*(-1)^n-2*(-21+(-1)^n)*n+6*n^2)/8. G.f.: -x*(6*x^4-3*x^3-16*x^2+5*x+14) / ((x-1)^3*(x+1)^2). - Colin Barker, Apr 18 2014 and Apr 29 2015
The terms appear to satisfy a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), with initial terms 14, 19, 31, 38, 54. - T. D. Noe, Apr 18 2014
Numbers are of the form A200182(3n+1) and A200182(3n-1). - Avi Friedlich, Apr 25 2015
a(2*k-1) = 3*k^2 + 8*k + 3, a(2*k) = 3*k^2 + 10*k + 6. - Robert Israel, Apr 28 2015
EXAMPLE
Binomial(14,k) = (1, 14, 91, 364, 1001, 2002, 3003, 3432) for k = 0..7. The 4 terms beginning with 91 equal 182 - 273*x + 182*x^2 for x = 1..4.
MAPLE
map(k -> (3*k^2+8*k+3, 3*k^2+10*k+6), [$1..100]); # Robert Israel, Apr 28 2015
MATHEMATICA
Select[Range[2500], MemberQ[Differences[Binomial[#, Range[0, #/2]], 3], 0] &]
LinearRecurrence[{1, 2, -2, -1, 1}, {14, 19, 31, 38, 54}, 50] (* Harvey P. Dale, Oct 29 2017 *)
PROG
(PARI) Vec(-x*(6*x^4-3*x^3-16*x^2+5*x+14)/((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Apr 29 2015
(PARI) a(n)=(6*n^2+42*n+55-(-1)^n*(2*n+7))/8 \\ Charles R Greathouse IV, Apr 15 2016
CROSSREFS
Sequence A241200 gives the position of the first of the 4 terms. Sequence A008865 gives the terms greater than 2 for which 3 consecutive terms satisfy a linear relation.
A014206 is a related sequence. - Avi Friedlich, Apr 28 2015
Cf. A062730 (3 terms in arithmetic progression in Pascal's triangle).
Sequence in context: A121235 A007629 A349421 * A092768 A144080 A006576
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, Apr 17 2014
STATUS
approved