login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007350 Where prime race 4n-1 vs. 4n+1 changes leader.
(Formerly M3182)
16
3, 26861, 26879, 616841, 617039, 617269, 617471, 617521, 617587, 617689, 617723, 622813, 623387, 623401, 623851, 623933, 624031, 624097, 624191, 624241, 624259, 626929, 626963, 627353, 627391, 627449, 627511, 627733, 627919, 628013, 628427, 628937, 629371 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The following references include some on the "prime race" question that are not necessarily related to this particular sequence. - N. J. A. Sloane, May 22 2006

Starting from a(12502) = A051025(27556) = 9103362505801, the sequence includes the 8th sign-changing zone predicted by C. Bays et al. The sequence with the first 8 sign-changing zones contains 194367 terms (see a-file) with a(194367) = 9543313015387 as its last term. - Sergei D. Shchebetov, Oct 13 2017

REFERENCES

Feuerverger, Andrey; Martin, Greg; Biases in the Shanks-Renyi prime number race. Experiment. Math. 9 (2000), no. 4, 535-570.

Ford, Kevin; Konyagin, Sergei; Chebyshev's conjecture and the prime number race. IV International Conference "Modern Problems of Number Theory and its Applications": Current Problems, Part II (Russian) (Tula, 2001), 67-91.

Ford, Kevin; Konyagin, Sergei; The prime number race and zeros of L-functions off the critical line. II. Proceedings of the Session in Analytic Number Theory and Diophantine Equations, 40 pp., Bonner Math. Schriften, 360, 2003.

Granville, Andrew; Martin, Greg; Prime number races. (Spanish) With appendices by Giuliana Davidoff and Michael Guy. Gac. R. Soc. Mat. Esp. 8 (2005), no. 1, 197-240.

A. Granville and G. Martin, Prime number races, Amer. Math. Monthly, 113 (No. 1, 2006), 1-33.

Kaczorowski, Jerzy; A contribution to the Shanks-Renyi race problem. Quart. J. Math. Oxford Ser. (2) 44 (1993), no. 176, 451-458.

Kaczorowski, Jerzy; On the Shanks-Renyi race problem mod 5. J. Number Theory 50 (1995), no. 1, 106-118.

Martin, Greg; Asymmetries in the Shanks-Renyi prime number race. Number theory for the millennium, II (Urbana, IL, 2000), 403-415, A K Peters, Natick, MA, 2002.

Puchta, J.-C.; On large oscillations of the remainder of the prime number theorems. Acta Math. Hungar. 87 (2000), no. 3, 213-227.

M. Rubinstein and P. Sarnak, Chebyshev's bias, Exper. Math., 3 (1994), 173-197.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Andrey S. Shchebetov and Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000 (first 301 terms from Vincenzo Librandi and Robert G. Wilson)

C. Bays and R. H. Hudson, Numerical and graphical description of all axis crossing regions for moduli 4 and 8 which occur before 10^12, International Journal of Mathematics and Mathematical Sciences, vol. 2, no. 1, pp. 111-119, 1979.

C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp.54-76.

M. Deléglise, P. Dusart, X. Roblot, Counting Primes in Residue Classes, Mathematics of Computation, American Mathematical Society, 2004, 73 (247), pp.1565-1575.

A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.

R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]

Andrey S. Shchebetov and Sergei D. Shchebetov, First 194367 terms (zipped file)/a>

G. M. Ziegler, The great prime number record races, Notices Amer. Math. Soc. 51 (2004), no. 4, 414-416.

MATHEMATICA

lim = 10^5; k1 = 0; k3 = 0; t = Table[{p = Prime[k], If[Mod[p, 4] == 1, ++k1, k1], If[Mod[p, 4] == 3, ++k3, k3]}, {k, 2, lim}]; A007350 = {3}; Do[ If[t[[k-1, 2]] < t[[k-1, 3]] && t[[k, 2]] == t[[k, 3]] && t[[k+1, 2]] > t[[k+1, 3]] || t[[k-1, 2]] > t[[k-1, 3]] && t[[k, 2]] == t[[k, 3]] && t[[k+1, 2]] < t[[k+1, 3]], AppendTo[A007350, t[[k+1, 1]]]], {k, 2, Length[t]-1}]; A007350 (* Jean-François Alcover, Sep 07 2011 *)

lim = 10^5; k1 = 0; k3 = 0; p = 2; t = {}; parity = Mod[p, 4]; Do[p = NextPrime[p]; If[Mod[p, 4] == 1, k1++, k3++]; If[(k1 - k3)*(parity - Mod[p, 4]) > 0, AppendTo[t, p]; parity = Mod[p, 4]], {lim}]; t (* T. D. Noe, Sep 07 2011 *)

CROSSREFS

Cf. A007350, A007351, A038691, A051024, A066520, A096628, A096447, A096448, A199547, A038698 (another way to watch this race).

Cf. A156749 [sequence showing Chebyshev bias in prime races (mod 4)]. - Daniel Forgues, Mar 26 2009

Sequence in context: A171364 A115475 A225835 * A003839 A175875 A030463

Adjacent sequences:  A007347 A007348 A007349 * A007351 A007352 A007353

KEYWORD

nonn,easy,changed

AUTHOR

N. J. A. Sloane, Mira Bernstein, Robert G. Wilson v

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 23 00:27 EDT 2017. Contains 293782 sequences.