login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038691 Prime race 4k-1 vs. 4k+1 is tied at n-th prime. 14
1, 3, 7, 13, 89, 2943, 2945, 2947, 2949, 2951, 2953, 50371, 50375, 50377, 50379, 50381, 50393, 50413, 50423, 50425, 50427, 50429, 50431, 50433, 50435, 50437, 50439, 50445, 50449, 50451, 50503, 50507, 50515, 50517, 50821, 50843, 50853 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Starting from a(27410) = 316064952537 the sequence includes the 8th sign-changing zone predicted by C. Bays et al back in 2001. The sequence with the first 8 sign-changing zones contains 419467 terms (see a-file) with a(419467) = 330797040309 as its last term. - Sergei D. Shchebetov, Oct 16 2017

REFERENCES

Stan Wagon, The Power of Visualization, Front Range Press, 1994, pp. 2-3.

LINKS

Andrey S. Shchebetov and Sergei D. Shchebetov, Table of n, a(n) for n = 1..100000 (first 1000 terms from T. D. Noe)

A. Alahmadi, M. Planat, P. Solé, Chebyshev's bias and generalized Riemann hypothesis, HAL Id: hal-00650320.

C. Bays and R. H. Hudson, Numerical and graphical description of all axis crossing regions for moduli 4 and 8 which occur before 10^12, International Journal of Mathematics and Mathematical Sciences, vol. 2, no. 1, pp. 111-119, 1979.

C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp. 54-76.

M. Deléglise, P. Dusart, X. Roblot, Counting Primes in Residue Classes, Mathematics of Computation, American Mathematical Society, 2004, 73 (247), pp. 1565-1575.

A. Granville, G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33.

M. Rubinstein, P. Sarnak, Chebyshev’s bias, Experimental Mathematics, Volume 3, Issue 3, 1994, pp. 173-197.

Andrey S. Shchebetov and Sergei D. Shchebetov, Table of n, a(n) for n = 1..419647 (zipped file)

Eric Weisstein's World of Mathematics, Prime Quadratic Effect.

MATHEMATICA

Flatten[ Position[ FoldList[ Plus, 0, Mod[ Prime[ Range[ 2, 50900 ] ], 4 ]-2 ], 0 ] ]

PROG

(PARI) lista(nn) = {nbp = 0; nbm = 0; forprime(p=2, nn, if (((p-1) % 4) == 0, nbp++, if (((p+1) % 4) == 0, nbm++)); if (nbm == nbp, print1(primepi(p), ", ")); ); } \\ Michel Marcus, Nov 20 2016

CROSSREFS

Cf. A002145, A002313, A007350, A007351, A038698, A051024, A051025, A066520, A096628, A096447, A096448, A199547

Cf. A156749 Sequence showing Chebyshev bias in prime races (mod 4). - Daniel Forgues, Mar 26 2009

Sequence in context: A028491 A137474 A071087 * A237890 A082718 A221211

Adjacent sequences:  A038688 A038689 A038690 * A038692 A038693 A038694

KEYWORD

nonn,changed

AUTHOR

Hans Havermann

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 05:01 EST 2017. Contains 294988 sequences.