The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199547 Primes p for which pi_{4,3}(p) < pi_{4,1}(p), where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m). 13
 26861, 616841, 616849, 616877, 616897, 616909, 616933, 616943, 616951, 616961, 616991, 616997, 616999, 617011, 617269, 617273, 617293, 617311, 617327, 617333, 617339, 617341, 617359, 617369, 617401, 617429, 617453, 617521, 617537, 617689, 617693, 617699, 617717 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Another version of A007350. J. E. Littlewood (1914) proved that this sequence is infinite. a(1) = 26861 was found in 1957 by John Leech. Prime indices of negative terms in A066520. - Jianing Song, Feb 20 2019 REFERENCES Wacław Sierpiński, O stu prostych, ale trudnych zagadnieniach arytmetyki. Warsaw: PZWS, 1959, p. 22. LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000 G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 26861 FORMULA a(n) = prime(A096628(n)). - Jianing Song, Feb 20 2019 MATHEMATICA lst = {}; For[n = 2; t = 0, n < 50451, n++, t += Mod[p = Prime[n], 4] - 2; If[t < 0, AppendTo[lst, p]]]; lst CROSSREFS Cf. A007350, A038691, A038698, A051024, A051025, A066520, A096628. Sequence in context: A093181 A235751 A235814 * A051025 A048921 A269115 Adjacent sequences:  A199544 A199545 A199546 * A199548 A199549 A199550 KEYWORD nonn AUTHOR Arkadiusz Wesolowski, Dec 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 13:36 EDT 2020. Contains 333305 sequences. (Running on oeis4.)