login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007325 G.f.: Product_{k>0} (1-x^(5k-1))*(1-x^(5k-4))/((1-x^(5k-2))*(1-x^(5k-3))).
(Formerly M0415)
34
1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 2, -3, 2, 0, -2, 4, -4, 3, -1, -3, 6, -7, 5, 0, -5, 9, -10, 7, -1, -7, 14, -16, 11, -1, -11, 20, -22, 16, -2, -15, 29, -33, 23, -2, -23, 41, -45, 32, -4, -30, 57, -64, 45, -4, -43, 78, -86, 60, -7, -57, 107, -119, 83, -8, -79, 143 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

Expansion of f(-x, -x^4) / f(-x^2, -x^3) in powers of x where f(,) is Ramanujan's two-variable theta function.

Hauptmodul series for GAMMA(5).

Expansion of Rogers-Ramanujan's continued fraction 1 / (1 + x / ( 1 + x^2 / ( 1 + x^3 / ( 1 + x^4 / ... )))).

Given the g.f. A(x) the notation R(q) := q^(1/5) * A(q) is used by Berndt.

REFERENCES

G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, 2005, see p. 57.

B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 9.

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 81.

A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)

G. E. Andrews, Simplicity and surprise in Ramanujan's "Lost" Notebook, Amer. Math. Monthly, 104 (No. 10, Dec. 1997), 918-925.

W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162; see Eq. (6.4).

G. S. Joyce, Exact results for the activity and thermal compressibility of the hard-hexagon model, J. Phys. A 21 (1988), L983-L988.

J. Malenfant, Generalizing Ramanujan's J Functions, arXiv preprint arXiv:1109.5957 [math.NT], 2011.

P. J. Nahin, Number-Crunching, Princeton University Press, 2011. See p. 22 equation (2.2.4).

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction.

FORMULA

Euler transform of period 5 sequence [ -1, 1, 1, -1, 0, ...] (=-A080891).

G.f.: Product_{k>=1}(1-x^(5*k-1)) * (1-x^(5*k-4)) / ( (1-x^(5*k-2)) * (1-x^(5*k-3)) ) = H(x) / G(x) where H and G are respectively the g.f. of A003114 and A003106.

G.f.: (Sum (-1)^k x^((5*k + 3)*k/2))/(Sum (-1)^k x^((5*k + 1)*k/2)). - Michael Somos, Dec 13 2002

Given g.f. A(x), then B(q) = q * A(q^5) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v + u*v^3 + u^3*v^2. - Michael Somos, Mar 09 2004

Given g.f. A(x), then B(q) = q * A(q^5) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u * (u*v + w^2 + v^2*w) - w. - Michael Somos, Aug 29 2005

Given g.f. A(x), then B(q) = q * A(q^5) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u2 + u1*u3^2*u6 + u2*u3^2 - u2^2*u3*u6 - u3. - Michael Somos, Aug 29 2005

G.f.: 1 / (1 + x / ( 1 + x^2 / ( 1 + x^3 / ( 1 + x^4 / ... )))).

G.f.: 1 / (1 + 1 / (x^-1 + 1 / (x^-1 + 1 / (x^-2 + 1 / (x^-2 + 1 / ... ))))). - Michael Somos, Apr 30 2012

G.f.: A(x) =  S(0) -1; S(k) = 1 + x^k/S(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 18 2011

Hankel transform is A167683. - Michael Somos, Apr 30 2012

a(n) = (-1)^n * A226556(n). - Michael Somos, Jun 11 2013

a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A109091(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 01 2017

EXAMPLE

G.f. = 1 - x + x^2 - x^4 + x^5 - x^6 + x^7 - x^9 + 2*x^10 - 3*x^11 + 2*x^12 - ...

G.f. = q - q^6 + q^11 - q^21 + q^26 - q^31 + q^36 - q^46 + 2*q^51 - 3*q^56 + ...

MAPLE

t1:=mul((1-x^(5*k-1))*(1-x^(5*k-4))/((1-x^(5*k-2))*(1-x^(5*k-3))), k=1..60); seriestolist(series(t1, x, 59)); # N. J. A. Sloane, Jun 10 2013

A007325_G:=proc(x, NK); Digits:=250;

Q2:=1;

for k from NK by -1 to 0 do

Q1:=1+x^k/Q2; Q2:=Q1; od;

Q3:=Q2; S:=Q3-1;

end;

# Sergei N. Gladkovskii, Dec 18 2011

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^5] QPochhammer[ q^4, q^5] / (QPochhammer[ q^2, q^5] QPochhammer[ q^3, q^5]), {q, 0, n}] (* Michael Somos, Aug 17 2011 *)

a[ n_] := SeriesCoefficient[ ContinuedFractionK[ q^k, 1, {k, 0, n}], {q, 0, n}] (* Michael Somos, Jun 10 2013 *)

max = 65; CoefficientList[ Series[ Fold[ #2/(1 + #1)&, q^n, q^Reverse[ Range[0, max-1] ] ], {q, 0, max}], q] (* Jean-Fran├žois Alcover, Apr 04 2013 *)

PROG

(PARI) {a(n) = my(k); if( n<0, 0, k = (3 + sqrtint(9 + 40*n)) \ 10; polcoeff( sum( n=-k, k, (-1)^n * x^((5*n^2 + 3*n)/2), x * O(x^n)) / sum( n=-k, k, ( -1)^n * x^((5*n^2 + n)/2), x * O(x^n)), n))}

(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, if(k%5, (1 - x^k)^((-1)^binomial( k%5, 2)), 1), 1 + x * O(x^n)), n))}

(PARI) {a(n) = my(cf); if( n<0, 0, cf = contfracpnqn( matrix( 2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1))); polcoeff( cf[2, 1] / cf[1, 1] + x * O(x^n), n))}

(PARI) {a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + O(x); while( m<=n, m*=5; A = x * subst(A, x, x^5); A = (A * (1 - 2*A + 4*A^2 - 3*A^3 + A^4) / (1 + 3*A + 4*A^2 + 2*A^3 + A^4) / x)^(1/5)); polcoeff(A, n))}

CROSSREFS

Cf. A055101, A055102, A055103, A003823, A167683.

Sequence in context: A002120 A021435 A226556 * A247920 A187038 A269735

Adjacent sequences:  A007322 A007323 A007324 * A007326 A007327 A007328

KEYWORD

sign,easy,nice

AUTHOR

N. J. A. Sloane, Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 29 15:03 EDT 2017. Contains 287247 sequences.