login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007326 Difference between A000294 and the number of solid partitions of n (A000293).
(Formerly M2734)
10
0, 0, 0, 0, 0, 0, 1, 3, 8, 19, 40, 83, 176, 365, 775, 1643, 3483, 7299, 15170, 31010, 62563, 124221, 243296, 469856, 896491, 1690475, 3155551, 5834871, 10701036, 19479021, 35227889, 63335778, 113286272, 201687929, 357585904, 631574315, 1111614614, 1950096758, 3410420973, 5946337698, 10337420278, 17918573379, 30968896662, 53366449357, 91689380979, 157058043025, 268210414468, 456613323892 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Understanding this sequence is a famous unsolved problem in the theory of partitions.

Needs a b-file.

REFERENCES

G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190.

A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..47.

A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]

CROSSREFS

a(n) = A000294(n) - A000293(n).

Cf. A007327, A007328, A007329, A007330, A008780, A042984.

Sequence in context: A055341 A067332 A082535 * A136396 A006380 A260547

Adjacent sequences:  A007323 A007324 A007325 * A007327 A007328 A007329

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mira Bernstein

EXTENSIONS

Entry revised by Sean A. Irvine and N. J. A. Sloane, Dec 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 12:38 EDT 2019. Contains 324152 sequences. (Running on oeis4.)