The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003823 Power series expansion of the Rogers-Ramanujan continued fraction 1+x/(1+x^2/(1+x^3/(1+x^4/(1+...)))). 23
 1, 1, 0, -1, 0, 1, 1, -1, -2, 0, 2, 2, -1, -3, -1, 3, 3, -2, -5, -1, 6, 5, -3, -8, -2, 8, 7, -5, -12, -2, 13, 12, -7, -18, -4, 18, 16, -11, -26, -5, 27, 24, -14, -37, -8, 37, 33, -21, -52, -10, 53, 47, -29, -72, -15, 71, 63, -40, -98, -19, 99, 88, -53, -133, -27, 131, 115, -73, -178, -35, 177, 156, -95, -236, -48, 232, 204, -127, -311 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS This is the q-expansion of the Gamma(5)-modular function (or automorphic function) Lambda given, for example, in Erdelyi et al., Higher Transcendental Functions eq. 44 volume 3 page 24 sec. 14.6.3 - Warren Smith. Number 14 of the 15 generalized eta-quotients listed in Table I of Yang 2004. - Michael Somos, Aug 07 2014 A generator (Hauptmodul) of the function field associated with congruence subgroup Gamma(5). [Yang 2004] - Michael Somos, Aug 07 2014 REFERENCES G. E. Andrews, Ramanujan's "lost" notebook, III, the Rogers-Ramanujan continued fraction, Adv. Math. 41 (1981), 186-208. J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 81. A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 24. H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 404. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe) S.-D. Chen and S.-S. Huang, On the series expansion of the Göllnitz-Gordon continued fraction, Internat. J. Number Theory, 1 (2005), 53-63. W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162; see Eq. (6.5). J. Malenfant, Generalizing Ramanujan's J Functions, arXiv preprint arXiv:1109.5957 [math.NT], 2011. Y. Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671-682. See p. 679, Table 1. FORMULA G.f.: Prod_{k>0} (1-x^{5k-2})(1-x^{5k-3})/((1-x^{5k-1})(1-x^{5k-4})). G.f.: (Sum_{k in Z} (-1)^k * x^((5*k + 1) * k/2)) / (Sum_{k in Z} (-1)^k * x^((5*k + 3) * k/2)). - Michael Somos, Dec 13 2002 Euler transform of period 5 sequence [1, -1, -1, 1, 0, ...]. - Michael Somos, Dec 13 2002 G.f. is reciprocal of that for the Rogers-Ramanujan continued fraction r(tau) - see A007325. Expansion of f(-x^2, -x^3) / f(-x, -x^4) in powers of x where f(,) is Ramanujan's two-variable theta function. - Michael Somos, Aug 07 2014 a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109091(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 01 2017 EXAMPLE G.f. = 1 + x - x^3 + x^5 + x^6 - x^7 - 2*x^8 + 2*x^10 + 2*x^11 - x^12 - ... G.f. = 1/q + q^4 - q^14 + q^24 + q^29 - q^34 - 2*q^39 + 2*q^49 + 2*q^54 - q^59 + ... MAPLE M := 100: a[ M ] := 1+z; for n from M-1 by -1 to 1 do a[ n ] := series( 1 + z^n/a[ n+1 ], z, M+1); od: a[ 1 ]; M:=100; qf:=(a, q)->mul(1-a*q^j, j=0..M); t1:=qf(q^2, q^5)*qf(q^3, q^5)/(qf(q, q^5)*qf(q^4, q^5)); series(%, q, M); seriestolist(%); MATHEMATICA kmax = 16; f[x_] := Product[(1-x^(5k-2))*(1-x^(5k-3))/((1-x^(5k-1))*(1-x^(5k-4))), {k, 1, kmax}]; CoefficientList[ Series[f[x], {x, 0, 5*kmax}], x] (* Jean-François Alcover, Nov 02 2011, after g.f. *) a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^5] QPochhammer[ x^3, x^5] / (QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, Jul 09 2014 *) a[ n_] := If[n < 0, 0, SeriesCoefficient[ 1 / ContinuedFractionK[ x^k, 1, {k, 0, n}], {x, 0, n}]]; (* Michael Somos, Jul 09 2014 *) PROG (PARI) {a(n) = local(k); if( n<0, 0, k = (3 + sqrtint(9 + 40*n)) \ 10; polcoeff( sum( i=-k, k, (-1)^i * x^((5*i^2 + i)/2), x * O(x^n)) / sum( i=-k, k, (-1)^i * x^((5*i^2 + 3*i)/2), x * O(x^n)), n))}; /* Michael Somos, Dec 13 2002 */ (PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, if( k%5, (1 - x^k)^( -(-1)^binomial( k%5, 2)), 1), 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 13 2002 */ (PARI) {a(n) = local(cf); if( n<0, 0, cf = contfracpnqn( matrix(2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1))); polcoeff( cf[1, 1] / cf[2, 1] + x * O(x^n), n))}; /* Michael Somos, Dec 13 2002 */ CROSSREFS Cf. A007325. Sequence in context: A308626 A268755 A128664 * A059451 A083817 A286222 Adjacent sequences:  A003820 A003821 A003822 * A003824 A003825 A003826 KEYWORD sign,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 22:24 EST 2020. Contains 338858 sequences. (Running on oeis4.)