This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006000 a(n) = (n+1)*(n^2+n+2)/2; g.f.: (1 + 2*x^2) / (1 - x)^4. (Formerly M3436) 13
 1, 4, 12, 28, 55, 96, 154, 232, 333, 460, 616, 804, 1027, 1288, 1590, 1936, 2329, 2772, 3268, 3820, 4431, 5104, 5842, 6648, 7525, 8476, 9504, 10612, 11803, 13080, 14446, 15904, 17457, 19108, 20860, 22716, 24679, 26752, 28938, 31240, 33661, 36204, 38872, 41668, 44595, 47656, 50854, 54192 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Enumerates certain paraffins. a(n) is the (n+1)st (n+3)-gonal number. - Floor van Lamoen, Oct 20 2001 Sum of n terms of an arithmetic progression with the first term 1 and the common difference n: a(1)=1, a(2) = 1+3, a(3) = 1+4+7, a(4) = 1+5+9+13, etc. - Amarnath Murthy, Mar 25 2004 This is identical to: first triangular number A000217, 2nd square number A000290, 3rd pentagonal number A000326, 4th hexagonal number A000384, 5th heptagonal number A000566, 6th octagonal number A000567, ..., (n+1)-th (n+3)-gonal number = main diagonal of rectangular array T(n,k) of polygonal numbers, by diagonals, referred to in A086271. - Jonathan Vos Post, Dec 19 2007 Also (n + 1)! times the determinant of the n X n matrix given by m(i,j) = (i+1)/i if i=j and otherwise 1. For example, (6 + 1)!*Det[{{2,1,1,1,1,1}, {1,3/2,1,1,1,1},{1,1,4/3,1,1,1}, {1,1,1,5/4,1,1}, {1,1,1,1,6/5,1}, {1,1,1,1,1,7/6}}] = 154 = a(6). - John M. Campbell, May 20 2011 a(n-1) = N_2(n), n>=1, is the number of 2-faces of n planes in generic position in three-dimensional space. See comment under A000125 for general arrangement. Comment to Arnold's problem 1990-11, see the Arnold reference, p. 506. - Wolfdieter Lang, May 27 2011 For n>2, a(n) is 2 * (average cycle weight of primitive Hamiltonian cycles on a simply weighted K_n) (see link). - Jon Perry, Nov 23 2014 a(n) is the partial sums of A104249. - J. M. Bergot, Dec 28 2014 REFERENCES V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_2. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS William A. Tedeschi, Table of n, a(n) for n = 0..10000 S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy) P. A. MacMahon, Properties of prime numbers deduced from the calculus of symmetric functions, Proc. London Math. Soc., 23 (1923), 290-316. = Coll. Papers, II, pp. 354-382. [See p. 301]. Jon Perry, Weighted Hamiltonian Cycles Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Eric Weisstein's World of Mathematics, Polygonal Number Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = sum_{j=1..n+1} (binomial(0,0*j) + binomial(n+1,2)). - Zerinvary Lajos, Jul 25 2006 a(n-1) = n + (n^3 - n^2)/2 = n + n*T(n-1) where T(n-1) is a triangular number, n>=1. - William A. Tedeschi, Aug 22 2010 a(n) = A002817(n)*4/n for n>0. - Jon Perry, Nov 21 2014 E.g.f.: (1 + x)*(2 + 4*x + x^2)*exp(x)/2. - Robert Israel, Nov 24 2014 a(n) = A057145(n+3,n+1). - R. J. Mathar, Jul 28 2016 MAPLE A006000:=(1+2*z**2)/(z-1)**4; # Simon Plouffe in his 1992 dissertation MATHEMATICA a[n_]:=(n^3-n^2)/2+n; Table[a[n], {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *) CoefficientList[Series[(1 + 2 x^2) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *) PROG (Python) a = lambda n: a = lambda n: n + ((n**3 - n**2)//2) # William A. Tedeschi, Aug 22 2010 CROSSREFS Sequence in context: A112087 A166019 A184633 * A161216 A085622 A011940 Adjacent sequences:  A005997 A005998 A005999 * A006001 A006002 A006003 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 22:25 EDT 2019. Contains 328038 sequences. (Running on oeis4.)