login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005882 Theta series of planar hexagonal lattice (A2) with respect to deep hole.
(Formerly M2281)
203
3, 3, 6, 0, 6, 3, 6, 0, 3, 6, 6, 0, 6, 0, 6, 0, 9, 6, 0, 0, 6, 3, 6, 0, 6, 6, 6, 0, 0, 0, 12, 0, 6, 3, 6, 0, 6, 6, 0, 0, 3, 6, 6, 0, 12, 0, 6, 0, 0, 6, 6, 0, 6, 0, 6, 0, 9, 6, 6, 0, 6, 0, 0, 0, 6, 9, 6, 0, 0, 6, 6, 0, 12, 0, 6, 0, 6, 0, 0, 0, 6, 6, 12, 0, 0, 3, 12, 0, 0, 6, 6, 0, 6, 0, 6, 0, 3, 6, 0, 0, 12 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

On page 111 of Conway and Sloane is "If the origin is moved to a deep hole the theta series is Theta_{hex+[1]}(z) = theta_2(z) psi_6(3z) + theta_3(z) psi_3(3z) = 3 q^{1/3} + 3 q^{4/3} + 6 q^{7/3} + 6 q^{13/3} + ... (63)" where the psi_k() for integer k is defined on page 103 equation (11) as psi_k(z) = e^{Pi i/z^2} theta_3(Pi z/k | z) = Sum_{m in Z} q^{(m + 1/k)^2}. - Michael Somos, Sep 10 2018

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)

J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012) see page 695.

Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]

Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.

G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2

N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q^(-1/3) * 3 * eta(q^3)^3 / eta(q) in powers of q.

Expansion of q^(-1/3) * c(q) in powers of q where c(q) is the third cubic AGM theta function.

Given g.f. A(x), then B(x) = x*A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 2*u*w^2 - u^2*w. - Michael Somos, Aug 15 2006

G.f.: 3 Product_{k>0} (1-q^(3k))^3/(1-q^k).

G.f.: Sum_{u,v in Z} x^(u*u + u*v + v*v + u + v). - Michael Somos, Jul 19 2014

a(n) = 3 * A033687(n). a(n) = A113062(3*n + 1) = A033685(3*n + 1).

Expansion of 2 * psi(x^2) * f(x^2, x^4) + phi(x) * f(x^1, x^5) in powers of x where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 07 2018

EXAMPLE

G.f. = 3 + 3*x + 6*x^2 + 6*x^4 + 3*x^5 + 6*x^6 + 3*x^8 + 6*x^9 + 6*x^10 + ...

G.f. = 3*q + 3*q^4 + 6*q^7 + 6*q^13 + 3*q^16 + 6*q^19 + 3*q^25 + 6*q^28 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 3 QPochhammer[ q^3]^3 / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, Jul 19 2014 *)

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * eta(x^3 + A)^3 / eta(x + A), n))}; /* Michael Somos, Aug 15 2006 */

(MAGMA) Basis( ModularForms( Gamma1(9), 1), 302)[2] * 3; /* Michael Somos, Jul 19 2014 */

CROSSREFS

Essentially same as A033685 and A033687.

Cf. A113062, A273845.

Sequence in context: A132809 A265960 A279062 * A189915 A085572 A205548

Adjacent sequences:  A005879 A005880 A005881 * A005883 A005884 A005885

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 08:38 EST 2018. Contains 317175 sequences. (Running on oeis4.)