login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005879 Theta series of D_4 lattice with respect to deep hole.
(Formerly M4509)
4
8, 32, 48, 64, 104, 96, 112, 192, 144, 160, 256, 192, 248, 320, 240, 256, 384, 384, 304, 448, 336, 352, 624, 384, 456, 576, 432, 576, 640, 480, 496, 832, 672, 544, 768, 576, 592, 992, 768, 640, 968, 672, 864, 960, 720, 896, 1024, 960, 784, 1248, 816, 832, 1536 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

The D_4 lattice is the set of all integer quadruples [a, b, c, d] where a + b + c + d is even. The deep holes are quadruples [a, b, c, d] where each coordinate is half an odd integer and where a + b + c + d is even. - Michael Somos, May 23 2102

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=0..10000

G. Nebe and N. J. A. Sloane, Home page for this lattice

Index entries for sequences related to D_4 lattice

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of Jacobi theta_2(q)^4/(2q) in powers of q^2. - Michael Somos, Apr 11 2004

Expansion of q^(-1/2) * 8 * (eta(q^2)^2 / eta(q))^4 in powers of q. - Michael Somos, Apr 11 2004

Expansion of 8 * psi(x)^4 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, May 23 2012

Expansion of (phi(q)^4 - phi(-q)^4) / (2 * q) in powers of q^2. - Michael Somos, May 23 2012

G.f.: 8 * (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Apr 11 2004

a(n) = 8 * A008438(n) = 4 * A005880(n) = A000118(2*n + 1) = - A096727(2*n + 1). - Michael Somos, Nov 01 2006

EXAMPLE

8 + 32*x + 48*x^2 + 64*x^3 + 104*x^4 + 96*x^5 + 112*x^6 + 192*x^7 + ...

8*q + 32*q^3 + 48*q^5 + 64*q^7 + 104*q^9 + 96*q^11 + 112*q^13 + ...

PROG

(PARI) {a(n) = if( n<0, 0, 8 * sigma(2*n + 1))} /* Michael Somos, Apr 11 2004 */

CROSSREFS

Cf. A000118, A005880, A008438, A096727.

Sequence in context: A144096 A127988 A129749 * A067519 A009245 A018842

Adjacent sequences:  A005876 A005877 A005878 * A005880 A005881 A005882

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 01:00 EST 2014. Contains 250017 sequences.