OFFSET
0,1
COMMENTS
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = 2*A045834(n).
Expansion of 2*phi(q)*psi(q)^2 in powers of q where phi(),psi() are Ramanujan theta functions. - Michael Somos, Feb 21 2006
Expansion of theta_2(q^2)^2(theta_3(q)+theta_4(q))/(4q) in powers of q^4. - Michael Somos, Feb 21 2006
Expansion of 2q^(-1/4)eta(q^2)^9/(eta(q)^4*eta(q^4)^2) in powers of q. - Michael Somos, Feb 21 2006
G.f.: 2*Product_{k>0} (1+x^k)^4*(1-x^(2k))^3/(1+x^(2k))^2. - Michael Somos, Feb 21 2006
MATHEMATICA
s = EllipticTheta[3, 0, q]^2*EllipticTheta[2, 0, q]/q^(1/4) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 04 2015, from 1st formula *)
s = (2*(QPochhammer[q^2]^9/(QPochhammer[q]^4*QPochhammer[q^4]^2))) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015, from 3rd formula *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); 2*polcoeff( eta(x^2+A)^9/ eta(x+A)^4/eta(x^4+A)^2, n))} /* Michael Somos, Feb 21 2006 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved