OFFSET
1,4
REFERENCES
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, Letter to N. J. A. Sloane, Apr 1988
R. K. Guy, Monthly research problems, 1969-73, Amer. Math. Monthly, 80 (1973), 1120-1128.
R. K. Guy, Monthly research problems, 1969-75, Amer. Math. Monthly, 82 (1975), 995-1004.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
K. B. Reid, The number of graphs on N vertices with 3 cliques, J. London Math. Soc. (2) 8 (1974), 94-98.
Eric Weisstein's World of Mathematics, Clique.
Index entries for linear recurrences with constant coefficients, signature (3,-1,-4,2,2,2,-4,-1,3,-1)
FORMULA
G.f.: x^3*(1+x+3*x^3+x^2) / ( (1+x+x^2)*(1+x)^2*(x-1)^6 ). - Simon Plouffe in his 1992 dissertation
288*a(n) = -4*n^3+12*n^2-21*n/5-14+6*n^5/5+(-1)^n*9*(n-2) +32*A057078(n). - R. J. Mathar, Jul 30 2024
MAPLE
A005289p := proc(n)
n*(2*n^2+3*n-6)/72 ;
round(%) ;
end proc:
A005289 := proc(n)
if type(n, 'even') then
n*(n^2-4)*(n^2-6)/240+A005289p(n) ;
else
n*(n^2-1)*(n^2-9)/240+A005289p(n) ;
end if;
end proc:
seq(A005289(n), n=1..40) ; # R. J. Mathar, Aug 23 2015
MATHEMATICA
s = x^2*(3*x^3+x^2+x+1) / ((x-1)^6*(x+1)^2*(x^2+x+1)) + O[x]^40; CoefficientList[s, x] (* Jean-François Alcover, Nov 27 2015 *)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved