login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001982 Number of partitions of 4n-1 into n nonnegative integers each no greater than 8.
(Formerly M3441 N1396)
1
0, 1, 4, 12, 31, 71, 147, 285, 519, 902, 1502, 2417, 3768, 5722, 8481, 12310, 17528, 24537, 33814, 45949, 61629, 81688, 107089, 138979, 178669, 227703, 287828, 361075, 449731, 556423, 684089, 836078, 1016110, 1228391, 1477573, 1768875, 2108041, 2501480 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In Cayley's terminology, this is the number of literal terms of degree n and of weight 4n-1 involving the letters a, b, c, d, e, f, g, h, i, having weights 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

REFERENCES

A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.

A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]

FORMULA

Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)(1-x^7z)(1-x^8z)), where w=4n-1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

G.f.: (x^14 +3*x^13 +5*x^12 +8*x^11 +13*x^10 +17*x^9 +19*x^8 +19*x^7 +19*x^6 +17*x^5 +13*x^4 +8*x^3 +5*x^2 +3*x+1)*x / ((x^4+x^3+x^2+x+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2+x+1)^2 *(x+1)^3 *(x-1)^8). - Alois P. Heinz, Jul 25 2015

PROG

(PARI) f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)*(1-x^8*z)); n=400; p=subst(subst(f, x, x+x*O(x^n)), z, z+z*O(z^n)); for(d=0, 60, w=4*d-1; print1(polcoeff(polcoeff(p, w), d)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

CROSSREFS

Cf. A001981.

Sequence in context: A005289 A037255 A027658 * A129707 A320545 A232580

Adjacent sequences:  A001979 A001980 A001981 * A001983 A001984 A001985

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008

a(0)=0 inserted by Alois P. Heinz, Jul 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 12:30 EDT 2020. Contains 335687 sequences. (Running on oeis4.)