OFFSET
0,3
COMMENTS
In Cayley's terminology, this is the number of literal terms of degree n and of weight 4n-1 involving the letters a, b, c, d, e, f, g, h, i, having weights 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
REFERENCES
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (1, 3, -1, -5, -2, 5, 4, -3, -3, 3, 2, -3, -3, 2, 3, -3, -3, 4, 5, -2, -5, -1, 3, 1, -1).
FORMULA
Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)(1-x^7z)(1-x^8z)), where w=4n-1. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
G.f.: (x^14 +3*x^13 +5*x^12 +8*x^11 +13*x^10 +17*x^9 +19*x^8 +19*x^7 +19*x^6 +17*x^5 +13*x^4 +8*x^3 +5*x^2 +3*x+1)*x / ((x^4+x^3+x^2+x+1) *(x^6+x^5+x^4+x^3+x^2+x+1) *(x^2+x+1)^2 *(x+1)^3 *(x-1)^8). - Alois P. Heinz, Jul 25 2015
PROG
(PARI) f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)*(1-x^8*z)); n=400; p=subst(subst(f, x, x+x*O(x^n)), z, z+z*O(z^n)); for(d=0, 60, w=4*d-1; print1(polcoeff(polcoeff(p, w), d)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
a(0)=0 inserted by Alois P. Heinz, Jul 25 2015
STATUS
approved