The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005286 a(n) = (n + 3)*(n^2 + 6*n + 2)/6. (Formerly M4109) 9
 1, 6, 15, 29, 49, 76, 111, 155, 209, 274, 351, 441, 545, 664, 799, 951, 1121, 1310, 1519, 1749, 2001, 2276, 2575, 2899, 3249, 3626, 4031, 4465, 4929, 5424, 5951, 6511, 7105, 7734, 8399, 9101, 9841, 10620, 11439, 12299, 13201, 14146, 15135, 16169, 17249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of permutations of [n+3] with three inversions. - Michael Somos, Jun 25 2002 This sequence is related to A241765 by A241765(n) = n*a(n) - Sum_{i=0..n-1} a(i), with A241765(0)=0. For example: A241765(4) = 4*49 - (29+15+6+1) = 145. - Bruno Berselli, Apr 29 2014 For n >= 2, a(n) is also the number of multiplications between two nonzero matrix elements involved in calculating the product of an (n+1) X (n+1) Hessenberg matrix and an (n+1) X (n+1) upper triangular matrix. The formula for n X n matrices is (n+2)(n^2+4n-3)/6 multiplications, n >= 3. - John M. Coffey, Jul 18 2016 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 255, #2, b(n,3). R. K. Guy, personal communication. E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Exercise 1.30, p. 49. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1). FORMULA G.f.: (1+2*x-3*x^2+x^3)/(1-x)^4. - Simon Plouffe in his 1992 dissertation a(-6-n) = -a(n). - Michael Somos, May 12 2005 a(n) = a(n-1) + A000096(n+1) = A005581(n+2) - 1. - Henry Bottomley, Oct 25 2001 (m^3-7*m)/6 for m >= 3 gives the same sequence. - N. J. A. Sloane, Jul 15 2011 a(0)=1, a(1)=6, a(2)=15, a(3)=29, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Mar 07 2012 E.g.f.: (6 + 30*x + 12*x^2 + x^3)*exp(x)/6. - Ilya Gutkovskiy, Jul 09 2016 MATHEMATICA Table[(n + 3) (n^2 + 6*n + 2)/6, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *) LinearRecurrence[{4, -6, 4, -1}, {1, 6, 15, 29}, 50] (* Harvey P. Dale, Mar 07 2012 *) Table[Binomial[n, 3] + Binomial[n, 2] - n, {n, 3, 47}] (* or *) CoefficientList[Series[(1 + 2 x - 3 x^2 + x^3)/(1 - x)^4, {x, 0, 44}], x] (* Michael De Vlieger, Jul 09 2016 *) PROG (PARI) a(n)=n+=3; (n^3-7*n)/6 /* Michael Somos, May 12 2005 */ CROSSREFS Cf. A008302, A193106, A193107, A241765. Sequence in context: A295979 A180953 A200184 * A298877 A229063 A025212 Adjacent sequences:  A005283 A005284 A005285 * A005287 A005288 A005289 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 04:34 EDT 2020. Contains 335763 sequences. (Running on oeis4.)