login
A003414
a(n) = floor( Bernoulli(2*n)/(-4*n) ).
2
-1, 0, -1, 0, -1, 0, -1, 0, -2, 13, -141, 1803, -27414, 487468, -10026348, 236192433, -6317862398, 190439655626, -6425425249653, 241207241774250, -10020155328258127, 458387180159766538, -22989944171828251746, 1259023596072554784854, -75008667460769643668558
OFFSET
1,9
REFERENCES
F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 130.
D. C. Ravenel, Complex cobordism theory for number theorists, Lecture Notes in Mathematics, 1326, Springer-Verlag, Berlin-New York, 1988, pp. 123-133.
EXAMPLE
a(10) = 13 because the 20th (2 * 10) Bernoulli number is -174611/330, and that divided by (-4) * 10 is approximately 13.2281.
MATHEMATICA
Table[Floor[BernoulliB[2n]/(-4n)], {n, 24}] (* Alonso del Arte, Jul 11 2012 *)
CROSSREFS
KEYWORD
sign
STATUS
approved