login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003581 Dowling numbers: e.g.f. exp(x + (exp(b*x)-1)/b) with b=9. 11
1, 2, 13, 143, 1852, 27563, 473725, 9290396, 203745235, 4912490375, 128777672338, 3643086083981, 110557605978901, 3579776914324250, 123074955978249433, 4474133111905169219, 171363047274358839412, 6893620459732188296591, 290475101469031118494993 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..180

Moussa Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.

FORMULA

E.g.f.: exp(x + (exp(9*x) - 1)/9).

G.f.: 1/W(0), where W(k) = 1 - x - x/(1 - 9*(k+1)*x/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2014

a(n) = exp(-1/9) * Sum_{k>=0} (9*k + 1)^n / (9^k * k!). - Ilya Gutkovskiy, Apr 16 2020

EXAMPLE

G.f. = 1 + 2*x + 13*x^2 + 143*x^3 + 1852*x^4 + 27563*x^5 + ...

MAPLE

seq(coeff(series(factorial(n)*exp(z+(1/9)*exp(9*z)-(1/9)), z, n+1), z, n), n = 0 .. 20); # Muniru A Asiru, Feb 24 2019

MATHEMATICA

With[{m=20, b=9}, CoefficientList[Series[Exp[x +(Exp[b*x]-1)/b], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, Feb 24 2019 *)

Table[Sum[Binomial[n, k] * 9^k * BellB[k, 1/9], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)

PROG

(PARI) Vec(serlaplace(exp(z + (exp(9*z) - 1)/9))) \\ Michel Marcus, Nov 07 2014

(MAGMA) m:=20; c:=9; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x +(Exp(c*x)-1)/c) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 24 2019

(Sage) m = 20; b=9; T = taylor(exp(x +(exp(b*x)-1)/b), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Feb 24 2019

CROSSREFS

Cf. A000110 (b=1), A007405 (b=2), A003575 (b=3), A003576 (b=4), A003577 (b=5), A003578 (b=6), A003579 (b=7), A003580 (b=8), this sequence (b=9), A003582 (b=10).

Sequence in context: A003414 A003326 A207493 * A129256 A046245 A178248

Adjacent sequences:  A003578 A003579 A003580 * A003582 A003583 A003584

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Name clarified by Muniru A Asiru, Feb 24 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 23 13:02 EST 2020. Contains 338590 sequences. (Running on oeis4.)