The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A207493 E.g.f. A(x) is the series reversion of 2*x-1/2*x^2-exp(x)+1. 0
 1, 2, 13, 141, 2141, 41798, 997340, 28124253, 915095222, 33744966795, 1390772973547, 63353273661835, 3160751396077900, 171405094563763674, 10038777321831260503, 631498191927510881178, 42464602911622645539047, 3039724643022777390236243 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA a(n) = (sum(k=0..n-1, (n+k-1)!*sum(j=0..k, 1/(k-j)!*sum(l=0..j, 1/l!*sum(i=0..l, ((-1)^(i+l)*2^(l-2*i)* C(l,i)*stirling2(n+j-i-l-1,j-l))/(n+j-i-l-1)!))))). a(n) ~ n^(n-1) / (sqrt(1+c) * exp(n) * (3-c*(2+c)/2)^(n-1/2)), where c = LambertW(exp(2)) = 1.5571455989976... (see A226571). - Vaclav Kotesovec, Jan 22 2014 MATHEMATICA Rest[CoefficientList[InverseSeries[Series[2*x-1/2*x^2-E^x+1, {x, 0, 20}], x], x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 22 2014 *) PROG (Maxima) a(n):=(sum((n+k-1)!*sum(1/(k-j)!*sum(1/l!*sum(((-1)^(i+l)*2^(l-2*i) *binomial(l, i)*stirling2(n+j-i-l-1, j-l))/(n+j-i-l-1)!, i, 0, l), l, 0, j), j, 0, k), k, 0, n-1)); CROSSREFS Cf. A226571. Sequence in context: A143137 A003414 A003326 * A003581 A129256 A046245 Adjacent sequences:  A207490 A207491 A207492 * A207494 A207495 A207496 KEYWORD nonn AUTHOR Vladimir Kruchinin, Feb 18 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 09:52 EDT 2021. Contains 343110 sequences. (Running on oeis4.)