login
A003411
Losing initial positions in game: two players alternate in removing >= 1 stones; last player wins; first player may not remove all stones; each move <= 3 times previous move.
(Formerly M0561)
3
1, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, 76, 105, 145, 200, 276, 381, 526, 726, 1002, 1383, 1909, 2635, 3637, 5020, 6929, 9564, 13201, 18221, 25150, 34714, 47915, 66136, 91286, 126000, 173915, 240051, 331337, 457337, 631252, 871303, 1202640, 1659977
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = a(n-1) + a(n-4), n >= 5.
G.f.: (1+x+x^2+x^3+x^4)/(1-x-x^4).
MAPLE
A003411:=-(1+z+z**2+z**3+z**4)/(-1+z+z**4); # Conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 0, 0, 1}, {2, 3, 4, 6}, 80]] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
CROSSREFS
Presumably equals A048590(n-3) - 3, n>3.
Sequence in context: A014213 A341218 A064323 * A034081 A289432 A064660
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, R. K. Guy, Rodney W. Topor (rwt(AT)cit.gu.edu.au)
STATUS
approved