login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002330
Value of y in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).
(Formerly M0462 N0169)
39
1, 2, 3, 4, 5, 6, 5, 7, 6, 8, 8, 9, 10, 10, 8, 11, 10, 11, 13, 10, 12, 14, 15, 13, 15, 16, 13, 14, 16, 17, 13, 14, 16, 18, 17, 18, 17, 19, 20, 20, 15, 17, 20, 21, 19, 22, 20, 21, 19, 20, 24, 23, 24, 18, 19, 25, 22, 25, 23, 26, 26, 22, 27, 26, 20, 25, 22, 26, 28, 25
OFFSET
1,2
REFERENCES
A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
John Brillhart, Note on representing a prime as a sum of two squares, Math. Comp. 26 (1972), pp. 1011-1013.
A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904. [Annotated scans of selected pages]
J. Todd, A problem on arc tangent relations, Amer. Math. Monthly, 56 (1949), 517-528.
Eric Weisstein's World of Mathematics, Fermat's 4n Plus 1 Theorem.
FORMULA
a(n) = A096029(n) + A096030(n) + 1, for n>1. - Lekraj Beedassy, Jul 21 2004
a(n+1) = Max(A002972(n), 2*A002973(n)). - Reinhard Zumkeller, Feb 16 2010
EXAMPLE
The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
---------------------------------
.p..a..b..t_1..c...d.t_2.t_3..t_4
---------------------------------
.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
MAPLE
a := []; for x from 0 to 50 do for y from x to 50 do p := x^2+y^2; if isprime(p) then a := [op(a), [p, x, y]]; fi; od: od: writeto(trans); for i from 1 to 158 do lprint(a[i]); od: # then sort the triples in "trans"
MATHEMATICA
Flatten[#, 1]&[Table[PowersRepresentations[Prime[k], 2, 2], {k, 1, 142}]][[All, 2]] (* Jean-François Alcover, Jul 05 2011 *)
PROG
(PARI) f(p)=my(s=lift(sqrt(Mod(-1, p))), x=p, t); if(s>p/2, s=p-s); while(s^2>p, t=s; s=x%s; x=t); s
forprime(p=2, 1e3, if(p%4-3, print1(f(p)", "))) \\ Charles R Greathouse IV, Apr 24 2012
(PARI) do(p)=qfbsolve(Qfb(1, 0, 1), p)[1]
forprime(p=2, 1e3, if(p%4-3, print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013
(PARI) print1(1); forprimestep(p=5, 1e3, 4, print1(", "qfbcornacchia(1, p)[1])) \\ Charles R Greathouse IV, Sep 15 2021
CROSSREFS
KEYWORD
nonn
STATUS
approved