OFFSET
1,3
COMMENTS
For p>2, x and y are uniquely determined [Frei, Th. 3]. - N. J. A. Sloane, May 30 2014
The corresponding y numbers are given in A002333.
REFERENCES
A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904. [Annotated scans of selected pages]
G. Frei, Euler's convenient numbers, Math. Intell. Vol. 7 No. 3 (1985), 55-58 and 64.
D. S., Review of A Table of Primes of Z[(-2)^(1/2)] by J. H. Jordan and J. R. Rabung, Math. Comp., 23 (1969), p. 458.
MATHEMATICA
f[ p_ ] := For[ y=1, True, y++, If[ IntegerQ[ x=Sqrt[ p-2y y ] ], Return[ x ] ] ]; f/@Select[ Prime/@Range[ 1, 200 ], Mod[ #, 8 ]<4& ]
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Dean Hickerson, Oct 07 2001
STATUS
approved