

A002365


Numbers y such that p^2 = x^2 + y^2, 0 < x < y, p = A002144(n).
(Formerly M3430 N1391)


14



4, 12, 15, 21, 35, 40, 45, 60, 55, 80, 72, 99, 91, 112, 105, 140, 132, 165, 180, 168, 195, 221, 208, 209, 255, 260, 252, 231, 285, 312, 308, 288, 299, 272, 275, 340, 325, 399, 391, 420, 408, 351, 425, 380, 459, 440, 420, 532, 520, 575, 465, 551, 612, 608, 609
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

A. J. C. Cunningham, Quadratic and Linear Tables. Hodgson, London, 1927, pp. 7779.
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 60.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
A. J. C. Cunningham, Quadratic and Linear Tables, Hodgson, London, 1927 [Annotated scanned copy of selected pages]


EXAMPLE

The following table shows the relationship
between several closely related sequences:
Here p = A002144 = primes == 1 mod 4, p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2+d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2a^2).

.p..a..b..t_1..c...d.t_2.t_3..t_4

.5..1..2...1...3...4...4...3....6
13..2..3...3...5..12..12...5...30
17..1..4...2...8..15...8..15...60
29..2..5...5..20..21..20..21..210
37..1..6...3..12..35..12..35..210
41..4..5..10...9..40..40...9..180
53..2..7...7..28..45..28..45..630
.................................
3^2 + 4^2 = 5^2, giving x=3, y=4, p=5 and we have the first terms of A002366, the present sequence and A002144.


CROSSREFS

Cf. A002144, A002366.
Sequence in context: A024353 A024354 A020883 * A212245 A046087 A081872
Adjacent sequences: A002362 A002363 A002364 * A002366 A002367 A002368


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Ray Chandler, Jun 23 2004
Revised definition from M. F. Hasler, Feb 24 2009


STATUS

approved



