login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002114 Glaisher's H' numbers.
(Formerly M4810 N2057)
9
1, 11, 301, 15371, 1261501, 151846331, 25201039501, 5515342166891, 1538993024478301, 533289474412481051, 224671379367784281901, 113091403397683832932811, 67032545884354589043714301, 46211522130188693681603906171 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) mod 9 = 1,2,4,8,7,5 repeated period 6 (A153130, see also A001370). a(n) mod 10 = 1. - Paul Curtz, Sep 10 2009

REFERENCES

A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..100

J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc., 31 (1899), 216-235.

Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565

Index entries for sequences related to Glaisher's numbers

FORMULA

H'(n) = H(n)/3, where H(n)=2^(2n+1)*I(n) (see A002112) and e.g.f. for (-1)^n*I(n) is (3/2)/(1+exp(x)+exp(-x)) (see A047788, A047789).

H'(n) = A000436(n)/2^(2n+1). - Philippe Deléham, Jan 17 2004

For n > 0, H'(n) = Sum{k = 0..n, T(n, k)*9^(n-k)*2^(k-1) }; where DELTA is the operator defined in A084938, T(n, k) is the triangle, read by rows, given by :[0, 1, 0, 4, 0, 9, 0, 16, 0, 25, ...] DELTA [1, 0, 10, 0, 28, 0, 55, 0, 90, ..]= {1}; {0, 1}; {0, 1, 1}; {0, 1, 12, 1}; {0, 1, 63, 123, 1}; {0, 1, 274, 2366, 1234, 1}; ... For 1, 10, 28, 55, 90, 136, ... see A060544 or A060544. - Philippe Deléham, Jan 17 2004

E.g.f. 1/2*1/(2*cos(x)-1). a(n)=sum(sum(binomial(k,j)*(-1)^(k-j+1)*1/2^(j-1)*sum((-1)^(n)*binomial(j,i)*(2*i-j)^(2*n),i,0,floor((j-1)/2)),j,0,k)*(-2)^(k-1),k,1,2*n), n>0. - Vladimir Kruchinin, Aug 05 2010

E.g.f.: E(x)= x^2/(G(0)-x^2) ; G(k)= 2*(2*k+1)*(k+1) - x^2 + 2*x^2*(2*k+1)*(k+1)/G(k+1); (continued fraction Euler's kind, 1-step ). - Sergei N. Gladkovskii, Jan 03 2012

If E(x)=Sum(k=0,1,..., a(k+1)*x^(2k+2)), then A002114(k) = a(k+1)*(2*k+2)!. - Sergei N. Gladkovskii, Jan 09 2012

a(n) ~ (2*n)! * 3^(2*n+1/2) / Pi^(2*n+1). - Vaclav Kotesovec, Feb 26 2014

a(n) = (-1)^n*6^(2*n)*(zeta(-n*2,1/3)-zeta(-n*2,5/6)), where zeta(a, z) is the generalized Riemann zeta function.

MAPLE

a := n -> (-1)^n*6^(2*n)*(Zeta(0, -n*2, 1/3)-Zeta(0, -n*2, 5/6)):

seq(a(n), n=1..14);

MATHEMATICA

Select[Rest[With[{nn=28}, CoefficientList[Series[1/(2 (2Cos[x]-1)), {x, 0, nn}], x]Range[0, nn]!]], #!=0&] (* Harvey P. Dale, Jul 27 2011 *)

PROG

(Maxima)

a(n) := sum(sum(binomial(k, j)*(-1)^(k-j+1)*1/2^(j-1)*sum((-1)^(n)*binomial(j, i)*(2*i-j)^(2*n), i, 0, floor((j-1)/2)), j, 0, k)*(-2)^(k-1), k, 1, 2*n) (* Vladimir Kruchinin, Aug 05 2010 *)

CROSSREFS

Sequence in context: A012184 A012027 A279181 * A012192 A012079 A180056

Adjacent sequences:  A002111 A002112 A002113 * A002115 A002116 A002117

KEYWORD

nice,easy,nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 20:44 EDT 2019. Contains 328315 sequences. (Running on oeis4.)