login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002115 Generalized Euler numbers.
(Formerly M5082 N2199)
11
1, 1, 19, 1513, 315523, 136085041, 105261234643, 132705221399353, 254604707462013571, 705927677520644167681, 2716778010767155313771539, 14050650308943101316593590153, 95096065132610734223282520762883 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..12.

FORMULA

E.g.f.: Sum_{n >= 0} a(n)*x^n/(3*n)! = 1/(1/3*exp(-x^(1/3))+2/3*exp(1/2*x^(1/3))* cos(1/2*3^(1/2)*x^(1/3))). - Vladeta Jovovic, Feb 13 2005

E.g.f.: 1/U(0)  where U(k)= 1 - x/(6*(6*k+1)*(3*k+1)*(2*k+1) - 6*x*(6*k+1)*(3*k+1)*(2*k+1)/(x - 12*(6*k+5)*(3*k+2)*(k+1)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Oct 04 2012

Alternating row sums of A278073. - Peter Luschny, Sep 07 2017

MATHEMATICA

max = 12; f[x_] := 1/(1/3*Exp[-x^(1/3)] + 2/3*Exp[1/2*x^(1/3)]*Cos[1/2*3^(1/2)* x^(1/3)]); CoefficientList[Series[f[x], {x, 0, max}], x]*(3 Range[0, max])! (* Jean-Fran├žois Alcover, Sep 16 2013, after Vladeta Jovovic *)

CROSSREFS

Cf. A000364, A178963, A278073.

Sequence in context: A177611 A051847 A217830 * A223498 A054949 A242564

Adjacent sequences:  A002112 A002113 A002114 * A002116 A002117 A002118

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vladeta Jovovic, Feb 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 20:33 EST 2019. Contains 319310 sequences. (Running on oeis4.)