login
A001765
Coefficients of iterated exponentials.
(Formerly M4447 N1882)
8
1, 7, 77, 1155, 21973, 506989, 13761937, 429853851, 15192078027, 599551077881, 26140497946017, 1248134313062231, 64783855286002573, 3632510833677434324, 218845138322691595694, 14099918095287618382033, 967508237903439910445565, 70447525748137979196484589
OFFSET
1,2
REFERENCES
J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy)
FORMULA
E.g.f.: -log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))).
MATHEMATICA
With[{nn=20}, CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+Log[1+Log[1+Log[1-x]]]]]]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jan 07 2023 *)
PROG
(PARI) T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
a(n) = T(n, 7); \\ Seiichi Manyama, Feb 11 2022
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))))) \\ Seiichi Manyama, Feb 11 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved