login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001767 Genus of modular group Gamma(n) = genus of modular curve Chi(n).
(Formerly M2459 N0976)
1
0, 0, 0, 0, 1, 3, 5, 10, 13, 26, 25, 50, 49, 73, 81, 133, 109, 196, 169, 241, 241, 375, 289, 476, 421, 568, 529, 806, 577, 1001, 833, 1081, 1009, 1393, 1081, 1768, 1441, 1849, 1633, 2451, 1729, 2850, 2281, 2809, 2641, 3773, 2689, 4215, 3301, 4321, 3865, 5500 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,6

COMMENTS

In Klein and Fricke, the level n is called Stufenzahlen, the congruence group is denoted by Gamma_{n} and the genus is called Geschlecht and denoted by p. - Michael Somos, Nov 08 2014

REFERENCES

R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 15.

B. Iversen, Hyperbolic Geometry, Cambridge Univ. Press, 1992, see p. 238.

F. Klein and R. Fricke, Vorlesungen ueber die theorie der elliptischen modulfunctionen, Teubner, Leipzig, 1890, Vol. 1, see p. 398.

Russian Encyclopedia of Mathematics, Vol. 3, page 931.

B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 94.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 2..1000

Index entries for sequences related to modular groups

FORMULA

a(n) = 1 + (n-6)*A000010(n)*A001615(n)/24, for n > 2. - Gheorghe Coserea, Oct 23 2016

EXAMPLE

G.f. = x^6 + 3*x^7 + 5*x^8 + 10*x^9 + 13*x^10 + 26*x^11 + 25*x^12 + ...

MATHEMATICA

Join[{0}, Table[1 + n^2 (n - 6)/24 Product[If[Mod[n, Prime[p]] == 0, 1 - 1/Prime[p]^2, 1], {p, PrimePi[n]}], {n, 3, 100}]] (* T. D. Noe, Aug 10 2012 *)

a[ n_] := If[ n < 3, 0, 1 + n^2 (n - 6)/24 Product[ If[ PrimeQ[p] && Divisible[n, p], 1 - 1/p^2, 1], {p, 2, n}]]; (* Michael Somos, Nov 08 2014 *)

PROG

(PARI) {a(n) = if(n<3, 0, 1 + n^2 * (n-6) / 24 * prod(p=2, n, if( isprime(p) && (n%p==0), 1 - 1/p^2, 1)))}; /* Michael Somos, May 19 2004 */

(PARI)

a(n) = {

  if (n < 6, return(0));

  my(f = factor(n), fsz = matsize(f)[1],

     g = prod(k=1, fsz, f[k, 1]),

     h = prod(k=1, fsz, sqr(f[k, 1]) - 1));

  return(1 + (n-6)*sqr(n\g)*h\24);

};

vector(52, n, a(n+1))  \\ Gheorghe Coserea, Oct 23 2016

CROSSREFS

Sequence in context: A265282 A160792 A137395 * A273160 A285138 A048214

Adjacent sequences:  A001764 A001765 A001766 * A001768 A001769 A001770

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 07:30 EST 2018. Contains 299597 sequences. (Running on oeis4.)