OFFSET
1,2
COMMENTS
Equivalently, the degree of the modular curve X(N) as a cover of the j-line.
REFERENCES
R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 15.
B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 76.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Ioannis Ivrissimtzis, David Singerman, James Strudwick, From Farey fractions to the Klein quartic and beyond, arXiv:1909.08568 [math.GR], 2019. See mu(n) p. 3.
FORMULA
a(n) = n * A000114(n). - Michael Somos, Jan 29 2004
a(n) = ((n^3)/2)*Product_{p | n, p prime} (1-1/p^2), for n>=3. - Michel Marcus, Oct 23 2019
MAPLE
proc(n) local b, d: b := (n^3)/2: for d from 1 to n do if irem(n, d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
MATHEMATICA
Table[ (n^3)/If[ n>2, 2, 1 ] Times@@(1-1/Select[ Range[ n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 45} ] (* Olivier Gérard, Aug 15 1997 *)
PROG
(PARI) a(n) = if (n==1, 1, if (n==2, 6, my(f=factor(n)); prod(k=1, #f~, 1-1/f[k, 1]^2)*n^3/2)); \\ Michel Marcus, Oct 23 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Olivier Gérard, Aug 15 1997
Definition corrected by Mira Bernstein, May 30 2006
STATUS
approved