login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001768 Sorting numbers: number of comparisons for merge insertion sort of n elements.
(Formerly M2408 N0954)
5
0, 1, 3, 5, 7, 10, 13, 16, 19, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.3.1.

T. A. J. Nicholson, A method for optimizing permutation problems and its industrial applications, pp. 201-217 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.

J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.

L. R. Ford, Jr. and S. M. Johnson, A tournament problem, Amer. Math. Monthly, 66 (1959), 387-389.

Eric Weisstein's World of Mathematics, Sorting

Index entries for sequences related to sorting

FORMULA

a(n) = Sum_{k=1..n} ceiling(log_2 (3k/4)). See also Problem 5.3.1-14 of Knuth.

a(n) = n(z-1)-[(2^(z+2)-3z)/6] where z = [log_2(3n+3)]. - David W. Wilson, Feb 26 2006

MAPLE

Digits := 60: A001768 := proc(n) local k; add( ceil( log(3*k/4)/log(2) ), k=1..n); end;

MATHEMATICA

Accumulate[Ceiling[Log[2, (3*Range[60])/4]]] (* Harvey P. Dale, Oct 30 2013 *)

PROG

(PARI) a(n)=ceil(log(3/4*n)/log(2)) \\ Charles R Greathouse IV, Nov 04 2011

(Haskell)

a001768 n = n * (z - 1) - (2 ^ (z + 2) - 3 * z) `div` 6

   where z = a085423 $ n + 1

-- Reinhard Zumkeller, Mar 16 2013  after David W. Wilson's formula.

CROSSREFS

Cf. A085423, A000523.

Sequence in context: A016040 A003070 A036604 * A089108 A186355 A029899

Adjacent sequences:  A001765 A001766 A001767 * A001769 A001770 A001771

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Name clarified by Li-yao Xia, Nov 18 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 15 20:47 EST 2019. Contains 319184 sequences. (Running on oeis4.)