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We present a theory of attractors on finite sets which is applicable to finite-state systems sud
computing structures and other systems which display a hierarchy of organizations with a dis
time evolution. Because computing with attractive fixed points can lead to reliable behavior [B.
Huberman and T. Hogg, Phys. Rev. Lett. 52, 1048 (
es, i.e., those which contract volumes in phase space. The stability of such systems is quantifi
analytic expressions are obtained for the appropriate indices in some limiting cases. It is also s
that trees with ultrametric topologies provide the natural language for these systems. The th
extended to include several practical constraints, and connections are made with experimental qphan
tities which can be measured in particular architectures. .
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1. INTRODUCTION

The time evolution of computing structures poses in-
teresting challenges when trying to develop a science of
their behavior. A main difficulty appears when one at-
tempts to use conventional dynamical systems theory. Be-
ing finite-state systems that operate in digital space-time,
computers cannot be described with the usual concepts
based on continuum dynamics and classical analysis. This
inherent problem is illustrated by the familiar notion of
generic stability, which is based on the relative behavior of
trajectories which differ initially by arbitrarily small
amounts.! With finite-state machines, such a limit does
not exist because of the intrinsic granularity of their phase
spaces. Rather, one is forced to consider dynamics on a
totally different topology which is appropriate for the
time evolution of finite sets. Therefore, a proper language
with which to codify such behavior is given by combina-
torial analysis and discrete maps.

This paper presents a theory of attractors on finite sets
which is applicable to finite-state systems such as comput-
ing structures and other systems which display a hierar-
chy of organizations with a discrete time evolution. Be- \
cause reliable behavior is intrinsically interesting, and can
appear when dealing with attractive fixed points,? we will
concentrate on dissipative processes, namely those which
contract volumes in phase space. Furthermore, we will
restrict both the space-time and state variables to a finite
set of values, which is the case in the real world. This is
to be contrasted with the general theory of cellular auto-
mata and formal Turing machines, where most of their
interesting properties depend on their being infinite. This
restriction leads in turn to the introduction of trees with
ultrametric topologies, which are the appropriate language
for these systems.” Such a language also provides a natur-
al framewor" for the discussion of the emergence of glo-
bal computational capabilities out of a collection of

simpler units. We should mention that with minor modi-
fications the whole theory will apply to the deterministic
dynamics of Boolean networks.*
Section Il presents the theory of dissipative discrete
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dynamics on finite sets, as well as a diagrammatic tech-
nique which is useful for analyzing the behavior of mam
on finite sets. In Sec. III the theory is extended to include
several practical constraints and Sec. IV presents some ik
lustrations of the results obtained in the previous sections
A concluding section summarizes the main points of the
theory, and outlines its extensions to adaptive structures
An appendix presents the derivation of the generating
function for the H numbers, which measure the number
of discrete trajectories which map given inputs into at-
tractive fixed points in a fixed number of iterations.

1. GENERAL THEORY

In this section we will describe the basic propertics of
deterministic discrete dynamical systems and consider 3
number of simple examples to illustrate these ideas.

(a) Maps on finite sets. The dynamics of a quanufy
that takes on a finite set of values and changes only s
discrete instants of time is governed by discrete maps
investigate the nature of such processes we will cons!

maps of a finite set S into itself. Two simple examples
={0,1,2,3]. 3"
given in Fig. 1. In the map of Fig. 1(a), four inputs 3%

(a) ‘M. 0 . 2 3 () ©min®
</ |
output 0 ' 2 3 g2 ('
© gt [ 1 2 3 (a (0)(‘)(") *
output >%<< ) OIRE
FIG. 1. (a) The map on {0,1,2,3} given by f(n)=2" ‘m"";

(b) Equivalence classes for this map. (c) A permutati

{0,1,2,3} given by 0—1—2—3—0. (d) Equivalence cl
the permutation.

s
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mapped to two outputs, thereby giving a contraction fac-
wor of 2. The map can alternatively be characterized by
(he sets of inputs that are mapped to each output which in
this case are {0,2] and {1,3}, as shown in Fig. 1(b).
" These sets define equivalence classes such that the result
of the map acting on each member of a class is the same.
The other example, shown in Fig. 1(c), is a2 permutation
and therefore has no contraction in its dynamics. In this
ase each input is mapped to a unique output and hence is
in a separate equivalence class as shown in Fig. 1(d). In
(hese examples, the original inputs can be considered as a
collection of singleton classes, in that at the input stage
ach input is distinct.

These equivalence classes form a partition of the origi-
nal set of inputs S, i.e., the classes do not have any ele-
ments in common and their union is the whole set S. Al-
rernatively, a map can be represented by a collection of

irees of depth 1 in which all points that are mapped to- -

gether are considered nodes in the same tree. This tree
gructure provides a simple graphical representation of the
map, examples of which are given in Figs. 1(a) and 1(c).
A contractive map, i.c., one that takes many inputs into
fewer outputs, is the discrete analog of a dissipative physi-
al system which contracts volumes in phase space. The
ssymptotic behavior of these systems is determined by
their attractors and associated basins of attraction. For
contractive maps, the inputs to each tree, or the members
of each equivalence class, specify the basins of attraction
for the system. We can then define a global contraction
ate C in terms of the number of inputs (N, ) and the
final number of outputs (N oypy,) as

C=Ninput/Noutput . (D

In the remainder of this paper we will focus on the na-
wre of discrete attractors regardless of the actual value of
any given output. Thus maps that produce the same
equivalence-class structure will be considered equivalent
even though the actual outputs may differ in their values.

To generate dynamics over time periods longer than the
unglc iteration we have just discussed, these maps can be
tterated many times, possibly with a different map at each
step. The result after m steps can be viewed as a collec-
uon of trees of uniform depth m, with the leaves
representing the original inputs and the roots representing
the final outputs. The branching at each node gives the
aumber of distinct inputs that are mapped to the same
output at that step of the series of maps. Examples of
weh structures are shown in Fig. 2(a). Or, viewed in
zms of equivalence classes, the maps specify successive
wrtitionings of the original set of inputs in which the
dlasses resulting from the map at step k are unions of
dasses at step k — 1. That is, the sets of inputs that can
* considered equivalent after k steps (because they pro-
“uce the same output at this point) are formed by combin-
©g the corresponding sets at the (k — 1)th step. Further-
more, by disregarding the particular outputs and focusing
2stead on these sets, each series of maps is uniquely iden-
¥fied by the corresponding series of successive partition-

7gs. We thus have three equivalent ways of viewing
«rete dynamical systems: (1) as iterated maps, (2) as
%5, or (3) as successive collections of equivalence
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(8) maps af 2 inguis to » singte output in 3 steps (b) equivaience classes
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.
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FIG. 2. (a) The three ways of mapping two inputs to a single
output in three steps represented as trees. (b) Corresponding
equivalence classes. Each of the three paths through the classes
corresponds to a specific map.

classes. Contractive maps will then correspond to trees
with many leaves, or to equivalence classes that become
larger as the system evolves in time.

Before proceeding further, we should point out that
these trees possess an ultrametric topology.® By this we
mean that a distance d can be defined such that any three
nodes on the same level form an isosceles triangle. Specif-
ically, these nodes can be labeled in such a way that
d(a,b)=d(b,c) >d(a,c). For the trees corresponding to
iterated maps, an appropriate ultrametric distance be-
tween nodes at given level of a single tree is the number of
steps the maps are iterated from that point on before they
produce the same output. Unlike the usual metrics such
as Hamming distance® which depend only on the inputs,
this one is generated by the maps themselves. It thus be-
comes the natural distance with which to analyze contrac-
tive dynamics of finite sets.

To clarify the behavior of these maps, we will first ex-
amine the characteristics of a single basin of attraction,
i.e.,, maps that produce a single output, and for definite-
ness, consider sets of integers. Specifically, given a
dynamical system with a specified global rate of contrac-
tion (or dissipation) C, we will now compute H",,, the to-
tal number of ways the set S={1,2,...,n] can be
mapped into a single output in m time steps. This num-
ber, and the methods used to compute it, will then be used
to- quantify the behavior of these maps. Alternatively,
H", is the total number of paths that take the original
(singleton) equivalence classes (1},{2},...,[n} into a
single final class {1,2,...,n} in m steps. Note that the
global contraction rate C is given by n. For the sake of
simplicity we will first consider the case of two inputs, as
it will illustrate some of the diagrammatic techniques
which we will use throughout this paper.

Consider two inputs being mapped through m steps
into a given output. The possible set of trajectories that
take inputs from m —1 to m are shown in Fig. 2(a) for
the case of m =3. In the language of equivalence classes,
in order to group the two singletons {1} and (2} into a
doubleton {1,2} in m steps, one can either group them by
the time the (m — 1)th step is reached in H?, _, ways, or
else wait until the last step to join them. This is shown in
Fig. 2(b). Therefore, the total number of paths at row m
is given in terms of the number of paths at row m —1 by
the following recursion relation

H?,=H?, _|+1 ' )
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with H? =1. That is, each new step introduces one addi-
tional possible map. This simple recursion relation has
the solution

H, =m 3)

which shows that the number of paths for two inputs in-
creases linearly with m, the number of steps.

In an analogous fashion one can calculate the number
of paths that take three inputs into a fixed point in m
steps. Figure 3 illustrates the possible dynamical configu-
rations in terms of equivalence classes and is an extension
of Fig. 2(b) to the case of three inputs and m steps. That
is, the final equivalence class [ 1,2,3}, can be formed from
five different partitions, namely, {1,2,3}, (1}{2,3},
{2}{1,3}, {3}(1,2}, and (1}(2}(3}. H’, will then be
the sum of the number of ways these partitions can each
be formed in m —1 steps. For instance, the partition
{1}{2,3) can be formed in H',, _H?, _, ways because it
contains a singleton set and a set with two elements. Thus
the required recursion relation is

HY YW =Hp \+3H y_(HY (+H' P (@)
Because H?,, is given by Eq. (3), this can be solved to give
H, =m(3m —1)/2 ‘ )

showing that the number of paths for three inputs in-
creases quadratically with the number of steps. For in-
stance, there are five ways of mapping three inputs to a
single output in two steps, and the corresponding trees are
shown in Fig. 4.

(b) Characterizing the attractors. A series of iterated
maps, or its resulting tree structure, can be characterized
by its response to perturbations or errors in the input. As
in the case of continuous physical systems, this provides a
measurement of the stability or reliability of the system.
However, discrete dynamics differs from its continuous
counterpart in that arbitrarily small perturbations are not
possible. Instead, perturbations, if they recover, will do so
exactly and within a finite number of time steps. This
behavior in turn requires a modification of the usual
quantities that describe global dynamical behavior. In the
remainder of this section we will evaluate the probability
for a perturbation to heal, in the sense that the perturbed
and original inputs produce the same final output. We
will also compute the tumbling index A for those errors

onginal input M@

l

| l l l |

alter rowm - | (1} (2) (3} (11422) {21 {(1,3) 3 (12) (1,23)

after sow m ,20)

FIG. 3. Possible equivalence class groupings for three inputs
mapped to a single output in m steps.

EALL!

FIG. 4. The five maps of three inputs into a single output in
two steps represented as trees.

that do eventually heal, which gives the number of steps
required for the recovery to take place.

Specifically, for a set of trees T produced by a particy-
lar series of maps and an input /, let P(T,i,i’) be the prob-
ability that another input i’ gives the same output as i,
This is 1 if i’ is in the same tree as /, and O otherwise,
The stability of i with respect to errors can be character-
ized by averaging over all possible i’ to give

P(T,)=(1/m) 3 P(T,i,i"h=| 4| /n , 6)
c

where | f;| is the number of inputs in the same tree as ;
(i.e., the number of leaves of the tree) and n is the tota]
number of inputs. Alternatively, | ;| is the size of the
basin of attraction containing i. Finally, the behavior of
the series of maps itself (or the corresponding collection
of trees T) is characterized by averaging over all of the in-
puts, i.e.,

P(N=(1/n) 3 P(T,)=(1/n}) F [t |?, (7)
i

t€T

where the latter sum is over all trees ¢ in the collection T
and | ¢ | is the number of inputs, or leaves, of 1.

Similarly, the behavior of those errors that do eventual-
ly recover is characterized by the tumbling index A,
which measures the number of steps before the original
and erroneous inputs map to the same point.> One can
also view A as giving the recovery time, or ultrametric
distance, between any two inputs in the same tree. Specif-
ically, if i and i’ are in the same tree then A(T,i,i’) is the
ultrametric distance between i and i’. For example, in the
three trees of Fig. 2(a), the distances between inputs 1 and
2 are 1, 2, and 3, respectively, which is just the number of
steps through the corresponding map required before the
two inputs produce the same output. Again the overall
behavior can be characterized by averaging:

ATH=01/]81) 3 AT,ii"), (8)
i€y

where the sum is over all inputs in the same tree as i, and

A(T)=(1/n) 3, A(T,i) 9
i

summed over all inputs i. Note that A can range between
0 and m, the number of mapping steps (or the number of
levels in the tree other than the root). A small value of A
means that errors in the input heal very quickly, if they
heal at all, whereas a large value indicates a long healing
length.

We should also mention that this discussion can be ap-
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lied to the case in which errors occur within the tree in-
stead of at the input stage. Thus if the perturbation is ap-

lied after k steps in an m-step sequence of maps, its
pehavior will be determined as above except that there will
pe only m —k remaining steps instead of the original m.
[n this way one can quantify both a healing length and a
nealing time for perturbations that occur at any point in
the dynamical system. An indication of the long-time sta-
pility of the maps is given by comparing this healing time
10 the rate at which errors are introduced. When the heal-
ing time is very short, the system will generally be able to
recover between errors and thereby maintain its state. In
the other limit, errors could build up and eventually cause
the outputs to be in another basin of attraction.

Although we have focused on the error-recovery prop-
erties of the attractors, it is important to note that there
will be other factors of interest in real systems. To see
this we can consider two extreme cases, namely the identi-
ty map and the map which takes all inputs to a single out-
put. In the first case, A is zero since each input is in a
separate tree but P will be very small since any perturba-
tion will give a different output. Thus the healing length
is very small but the system is extremely sensitive to er-
rors. In the second case, P will be 1 since all inputs pro-
duce the same output and the tumbling index will be close
to 1. These examples span the range of our reliability
measures, but neither exhibits interesting or complex glo-
bal behavior. Thus the maps involved in most cases of in-
terest will have intermediate values of P and A.

(c) Examples. In simple cases these quantities can be
explicitly computed. One such example arises when there
are 7 balanced binary trees with m rows so that a total of
n =2"r inputs are mapped to 7 outputs. This is illustrat-
ed in Fig. 5 for the case in which r=2 and m =2. Since
all the trees are the same size we have P(T,i)
=P(T)=1/7. The uniform structure of the trees also
implies that A(T,i) is independent of i, so that
A(T,i)=A(T). To evaluate A, consider input number 1 in
Fig. 5. There are four inputs in the corresponding tree so
that from Eq. (8) .

AT, 1) =+[A(T,1,1)+A(T,1,2)+A(T,1,3)+A(T,1,4)]
=7(0+14+242)=1% . (10)

Thus A=+ for this set of trees. Similarly, for arbitrary
m and a particular input i, there will be one input at dis-
tance O (namely, i itself), one at distance 1, two at distance
2, and so on up to 2™ ~! at distance m. Thus

T 2 3 4 s & 1 8
,
i

FIG. 5. Example of two balanced binary trees corresponding
0 a two-step map. Each tree has four inputs and the total num-
ber of inputs is n =2 2?=8.

AT)=2""™0+142X2+4+3X4+ - +mx2™"1)
=m—-142"". (1

For m =2, this gives + as obtained previously in Eq. (10).
Note that for these maps, A is nearly equal to m, its larg-
est possible value, so the healing of errors within a bal-
anced binary tree is very slow, i.e., most errors are not
corrected until the last few steps.

As another example, consider the case in which the
branches at each step come from a single node, with all
the branching ratios the same. Specifically, suppose that
there are 7 such trees with branching ratio b so that the
total number of inputs is n =7b. Figure 6 shows the situ-
ation for =3 and b =5. As in the previous case, the
trees all have the same size and structure. Thus
P(T,i)=P(T)=1/7 and

AMT,D=ATD=(1/b[0X1+1X(b-1)]=1-1/b.
(12)

In this example, A is small, indicating that errors within
the inputs of a single tree recover rapidly. Note also that
Fig. 6 illustrates the full tree structure at each step and
not just at the input. The large contraction at each step
will also give rapid recovery from errors that occur at any
step in the dynamics.

(d) The general case. The calculation of the number of
maps given above for cases involving a small number of
inputs can be generalized to an arbitrary number of inputs
and also to the computation of the tumbling index A. In
the general case of n inputs, the recursion relation can be
derived by considering the situation shown in Fig. 7.
That is, a typical partition of the full set will have A,
singleton sets, A, sets with two elements, etc., and A, sets
with n elements. Note that the number of elements in all
of the sets must add to n, i.e.,

S id=n. (13)

=]

Mmo12 13 14 15

e
NN

FIG. 6. Example of three balanced trees corresponding to a
four-step map. Each tree has five inputs and the total number
‘of inputs is n =15.
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o ho - T S where the sum is over all A;’s satisfying Eq. (13) and

) {x} ofx} {xx} {xx} {xx}  {xxx} . {xxx} ... {xx=x} H",=1. Although this appears to be a complex nonlinear
recursion relation, the highest term on the right-hand side,

- H",, _,, only enters linearly from the term corresponding
(o0} to A, =1 (and the other A;’s equal to zero). Thus H",

can be obtained from the values of H*,, for k <n by solv-
FIG. 7. A typical partition of the set {1,2,...,n] containing  ing an inhomogeneous linear recursion relation. In this

A, singleton sets, A, sets with two elements, etc., and A, sets way it can be shown that H",, is a polynomial in m of de-

with n elements. Each x is to be replaced wiih a unique value gree n — 1 whose leading term is n!(m /2)" -1

from 1 to n. Note that the A,’s must satisfy 37, ik =n. For the small values of n discussed previously this
reduces to the simple recursion relations of Egs. (2) and
(4). Specifically, for n =2 we have (A,A;)=(2,0) and

Thus a typical m-step map will correspond to a partition  (0,1) as possible values so Eq. (16) becomes

of this form after the (m — 1)th step and the last step will

create the final equivalence class {1,2,...,n}. Each set Hp =[2;0’1]H2"'—l+[2;2’0](H1’"-‘)2 an

in this partition of size k can be formed from the original  which is the same as Eq. (2) since [2;0,1]=[2;2,0]=1 and

inputs in m —1 steps in H*, _, ways. Thus this particu-  H! —1. Similarly for n =3 the possible values for the

lar partition can be produced by a total of A.'s are (A, Ay, A3)=(3,0,0), (1,1,0), and (0,0,1) so

H_ HY VX X H )™ (14) H?, = [3;0,0,11Hm _143;1,1,0)H 'y _ Hm _y
different maps. The number of such partitions is given by +[3;3,0,0H",, _})° . (18)
a modified multinomial coefficient [n;A;,Ay ... ,A,]

: 7 which is the same as Eq. (4) because [3;0,0,1]=1,
which equals (3;1,1,0]=3, and [3;3,0,0]=1. Table I shows values of the
[n;ApA, .. A H™,, numbers for various values of n and m.

nl We should note from this discussion that in the case of
= T — . m=2, H", the number of ways to map n inputs to a sin-
AARIX - XALMIDTIRDTEX - - X (n ) gle output in two steps, is just the number of ways of par-
(15) titioning the set {1,2,...,n}, into subsets. This is be-
: cause after the first step any partition of {1,2,...,n} can
W This relation can be seen from the typical partition shown  be uniquely obtained by a single map and each of these
in Fig. 7. There are n! ways of dividing the inputs among ~ must then map to the final output in the second step:
the various sets but this overcounts since the ordering of ~ Thus, when m =2, the H",, reduce to the Bell numbers,

the sets of equal size, as well as the elements within each which count the number of such partitions.® .
set, does not matter. For example [1,2}{3,4] is the same Similar techniques can be used to derive a recursion ¢
partition as {3,4}{1,2} and {1,2,3} is the same as lation for the value of A corresponding to a single basin of
{3,1,2]. Since there are A sets of size k, one must divide attraction that takes n inputs to a single output In ™
by A.! to avoid counting different orderings of the sets as steps. In general, a map will consist of a collection of
distinct. Similarly, there are k! ways to order the ele- such trees and, from Eq. (9), the overall value of the tum-
ments within a set of size k so that a factor of k! must be  bling index will be an average of the individual values
divided out for each such set. This gives a divisor of weighted by the size of the various trees. To determine
(k™ for all sets of this size. Combining these factors the recursion relation, one must know how the A values

then gives the actual number of distinct partitions in Eq. computed after m —1 steps can be combined to give lh:
(15). The final recursion relation for H",, can be obtained final value after m steps. We first consider a simple cas
from Eqgs. (14) and (15) by summing over all possible par-  In which two subtrees, ¢; and f,, containing n; and 72 i7"

titions of {1,2,...,n}. Thus puts, respectively, are combined at the last step 1nto 2 sin-
gle tree ¢ containing n =n,+n, inputs. Thus the root
H =3 [nApha .05 A] fI (H*, l)*k , (16)  node of ¢ has two branches, one containing ¢ and the oth-

k=t er t;. Let A, and A, be the values of the tumbling indices
Nz} n2 W;QL s
TABLE 1. H numbers for selected values of n and m. Rows denote m, while the columns denote n. A “ 0
1 1 1 1 1 1 1 W
W L1 2 s 15 52 203 877 — U WiV
[ o 2 1 3 12 60 358 2471 19302 - 465
Wl = 1 4 2 [ 54 304 2915 146 115 qmue 307
1 5 35 315 3455 44 590 660665 —— " - -,
\ 1 6 51 ) 561 7556 120196 2201856 — (('05
1 7 79 910 145‘32 274778 5995892 \__(é G
7 t /

l Y v, o
Al cops oy 1765
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TABLE II. A numbers for selected values of n and m. Rows denote m, while the columns denote n.

0.0 0.5 0.666 666 0.75
§ 0.0 0.75 1.066 667 1.25
p— 0.0 1.00 1.444 444 1.7125
0.0 1.25 1.818 182 2.167208
0.0 1.50 2.190476 2.619048
0.0 1.75 2.562092 3.069519
0.0 2.00 2.933334 3.519231

0.8 0.8333333 0.857 143
1.369231 1.453 202 1.515882
1.894972 2.028 194 2.13006

2.409 202 2.588 85 2.728 291
2919132 3.143922 3.319863
3.426 999 3.696 282 3.908 137
3.933719 4.247 126 4.494 55

for the subtrees. The problem is to determine the value of
A, the tumbling index for the entire tree t. Using Eq. (9)
and decomposing the sum over all inputs into sums over
the two subtrees gives

A=n"YniA,+n3A,+2mnn,) (19)

This relation can be readily generalized to the case in
which many equivalence classes are combined at the last
step of the series of maps.

Now let A", be the average value of the tumbling index
for all maps that take n inputs into a single output in m
steps. As in the case of H",, a recursion relation can be
obtained by considering the typical partition shown in
Fig. 7. The final value will be the average of the values
obtained for each individual partition, weighted by the
number of maps that produce that partition after m —1
steps. This factor is just the summand of Eq. (16). The A
value for the map corresponding to the partition of Fig. 7

‘©
Apar=n"13 M[iI*A'p _1+m(n —i] (20)

i=1

par

which depends on the particular partition through the
values of the A’s. Note that in the case of a partition with
just two sets this reduces to the expression given in Eq.
(19). Averaging this result over all possible partitions
then gives the final recursion relation for the tumbling in-
dex: .

H A" =3 [iAuA - o An] TT (H )™
k=1

2D

with A", =(n —1)/n. As in the case of Eq. (16) this can
also be solved for A", provided the values of Ak, k<n,
are known. For instance, when n =2 we have

2 =(m+1)/4. (22)

The tumbling indices for the trees of Fig. 2(a), in whxch
two mputs are mapped together in three steps, are + 1,
and , respectively. Their average is 1, which is just the
Value of A%, given by Eq. (22). Values of A", for other
indices n and m are shown in Table II

\w III. EXTENSIONS OF THE THEORY

For the sake of simplicity, the previous discussion made
a number of assumptions that will not hold in general. In
this section we discuss how these can be relaxed to deal

with constraints such as weighted errors, selective inputs,
and restrictions on the kinds of possible maps.

(a) Weighted errors. In general, various errors are not
equally likely to occur, so the averages used in Eqs. (6)
and (8) should be weighted by the probability of a particu-
lar error occurring. For example, suppose the inputs are
strings of bits of length k and each bit has an independent
error probability of €< ¢ , Then the probability for the
input i to produce an error i’ which differs in j of the k
possible positions is

wiiY=€e(1—e*~/. 23)

Note that the number of such i’ will be given by the bino-
mial coefficient
k

g PR 1 (24)
J] jNk -

'In this case, the Hamming distance between two inputs is

an appropriate metric in that w(i,i’) depends only on the
number of bits by which i and i’ differ.

Returning to the example of balanced binary trees illus-
trated in Fig. 5 we can compute the values of P and A
with this weighting. Since there are eight inputs in this
case, they will be represented by strings containing three
bits (from 000 for the first input to 111 for the eighth).
The weighted version of Eq. (6) implies that P(Ti) is the
sum of the weights w(i,i’) for all inputs in the same tree
as i. Thus in this example we have

P(T,l)=ﬁ)(l,1)+w(l,2)+w(l,3)+w(1,4)=l—e
(25)

Note that when e= %, so that all weights are equal,
P(T,1)=+ which is just its unweighted value. Similarly,
for computing A, only inputs in the same tree are to be in-
cluded. This means that the weights must be normalized
so that their sum over all inputs in a particular tree is one.
Thus Eq. (8) becomes

S wli,i)A(T,i,i")

€l
> wiii’)
i€y

AT )= ) (26)

where the sums are over all inputs i’ in the same tree as i.
For this example we get
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AT, D=[w(l,1)X0+w(l,2)X1
+w(],3)xX24+w(l1,4)x2]/(1—¢€)
=¢(3—¢) . 27

Again, when e= 7 this gives + which is just the value ob-
tained previously in the unweighted case.

(b) Selective inputs. In many practical instances only a
small subset of all possible inputs are relevant for a partic-
ular application. This is particularly true when the input
space is extremely large. Thus all maps that give the
same tree structure for this special group, rather than for
all inputs, can be considered equivalent. This effectively
reduces the size, as well as the number, of the trees in that
the other inputs can be ignored. However, they still play
a role in determining the error-recovery rate because er-
rors can still involve the other inputs. An example of
such a system is given by common error-correcting codes,
in which the desired outputs form a subset of the possible
noisy outputs. Thus, the computation of the number of
effectively distinct maps will only use the number of spe-
cial inputs instead of the full value of n. The tumbling
index, on the other hand, will still be determined by n, the
total size of the input space. Note that the restricted set
of inputs could have other special properties, e.g., being
far from the boundaries of the basins of attraction, and
therefore being more likely to recover from perturbations
than one would expect from an average over all positions.

(¢) Local maps. Previously, we have considered general
maps in that any input could be mapped to any output in-
dependently of the others. In applications to computing
structures that may be implemented as VLSI (very large
scale integration) chips,” the issue of locality arises since it
is easier to design circuits if the various elements do not
require long wires to communicate with distant parts of
the chip. It is thus desirable to consider only local maps.
As we have recently shown, there is a class of locally con-
nected architectures that can be made to compute in a dis-
tributed, self-repairing fashion, by exploiting the existence
of attractors in their phase spaces.> More generally, local-
ity will be required by any feasible computational process
as the number of inputs becomes large. This is due to the
fact that since the total number of general maps grows ex-
ponentially it is not feasible to specify arbitrary maps.
For instance, if the data consists of k-bit (binary digit) in-
tegers (so that there are n =2* inputs) then a locality re-
quirement means that a given bit of the output can only
depend on a fixed, finite number of neighboring bits in the
input. This greatly reduces the number of row-to-row
maps that are possible and hence restricts the possible glo-
bal behavior of the system.

As an extreme example consider one-bit maps, i.e., each
bit in the output depends only on the corresponding bit of
the input. In this case there are four possible local maps,
i.e., ways to map {0,1} onto itself, namely the identity
map; inversion, in which 0—1 and 1—0; setting to 1, in
which both 0 and 1 map to 1; and setting to 0. Since the
actual output is not important for this discussion, there
are only two distinct maps: either O and 1 can be mapped
to different points (a noncontractive map) or to the same
point (a contractive map). The local map that produces

each bit of the output can be chosen independently, so
that there will be a total of 2¥=n different maps. In the
general, unrestricted, case there will be many more possi-
ble maps. Specifically, the number of distinct maps in
one step is precisely the number of maps that produce a
single output after two steps, i.e., H", or the nth Bell
number.

More generally, for each bit of the output, the net effect
of a series of m maps is determined by the location of the
first contractive one-bit map. Since this can occur at any
of the m steps or never occur at all, there will be m + 1
possibilities for each bit. Thus there are (m + 1)* dif-
ferent m-step maps consisting of one-bit local maps. If
all of the inputs are to be in a single basin of attraction,
then there must be at least one contractive map in the
series for each bit. Thus the total number of local one-bit
maps that take n =2* inputs into a single output in m
steps is m* compared to H",, in the general case. For ex-
ample, if k=2 and m=3 then m*=9 whereas
H", =H*'=60. The restriction to local maps can also be
viewed as a constraint on the possible partitions of the set
of inputs {1,2,...,n} that can be realized as equivalence
classes for the maps. In this case, for instance, the realiz-
able partitions will consist of equal-sized subsets.

As illustrated by this example, restricting the kinds of
maps that can be used reduces the range of behavior that
the overall system can exhibit. This has the practical
consequence of creating situations in which constraints on
the system cannot always be satisfied by the restricted set
of maps.!°

(d) Long-time behavior. An additional issue is posed by
the case of very-long-time behavior, i.e., when m is not
much smaller than n. Instead of focusing only on the fi-
nal output after a fixed number of steps, it is then useful
to examine the behavior of the maps as a function of m.
If the same map is used at each step; then the behavior
will consist of a transient of average length n'/2 followed
by a fixed point or a cycle.!! On the other hand, if the
maps differ arbitrarily from step to step, even longer tran-
sients are possible and the system may never settle into a
final cycle at all.

IV. EXPERIMENTAL CONNECTIONS
WITH COMPUTING STRUCTURES

In this section we indicate how the theory developed in
this paper can be applied to real machines that implement
discrete dynamical systems.

(a) Maps from computational rules. A major applica-
tion of these ideas is to computing structures. In this case
the individual maps are implemented by a set of computa-
tional rules in either hardware or software. Since the total
number of possible maps grows very rapidly with the
number of inputs, those that can actually be implemented
will be a restricted subset, ¢.g., the machine will only be
capable of providing local maps. A proper analysis of the
reliability and other characteristics of such computing
structures requires a combination of a number of the fac-
tors discussed in Sec. III. For instance, the actual error
probabilities for the system will determine the weighting
function to use, and generally only a small subset of all
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ssible inputs will be important. For these finite-state
«chines, quantities such as P and A will indicate their
iabifli!v. For conventional computing circuits, small
nsi& or permanent errors, in their internal states or
a, Often lead to major global changes in behavior.'?
her kinds of machines, exploiting the collective
1avior of many parallel processors, can be made largely
mune to such perturbations by using the existence of at-
ctors.?
[he particular example that we have studied is a
chine composed of a rectangular array of simple pro-
sors each of which operates on integer data received lo-
ly from its neighbors. Overall input and output to the
chine takes place only along the edges. Each processor
; an internal state or bias, represented by an integer,
ich can only take on a small set of values. The unit
ermines its local output based on its inputs and its
:rnal state. At each time step, every element receives
a values from the units to its upper left and right,
pectively, and computes its output according to a sim-
rule. This rule leads in turn to a contraction mecha-
m whereby many inputs are mapped into the same out-
In the language of dynamical systems, this corre-
nds to the appearance of a fixed point in the phase
ce of the system. Furthermore, the contraction of
umes in phase space makes these fixed points attractive
the sense that perturbations quickly relax back to the
jinal values. This machine is capable of recovering
m errors in either the data or its internal state, and is
2 to »=aduce reliable pattern classification.
Ve : found that adding an adaptive process which
'ws the maps themselves to change depending on the
uts and a specification of the required response can
:n produce the desired classifications. Note that this
ptive process amounts to modifying the maps as a
ction of time. In our machine, this process usually
verges quickly to a fixed point at which the maps no
ger change. At this point, the quantities we have de-
d for a static series of maps can be evaluated. For a
‘ow—by—6-column array with 64 attractors, a mea-
'ment of A using techniques described below gave an
-age value of 4.2. This number implies that on the
"age errors recover in 4 steps, which is less than 10, the
th of the array. In this way, one can investigate the
le-offs between increased reliability and the ability to
sfy other external constraints such as producing a
sified grouping of patterns. Additional details con-
ling the architecture and behavior of this machine are
:n in Ref. 2.
5) Measurement techniques. Determining the particu-
tree that arises from a given set of computational
s, and hence deducing its characteristics analytically,
ifficult for all but the simplest rules. There is, howev-
n experimental approach that can be used to estimate
parameters that we have defined in this paper for a set
‘ules. Specifically, one can use random samplings or
austis~ searches to estimate the number and sizes of
val_, basins of attraction. Furthermore, for those
iples that do reproduce the original output, one can
rd the corresponding healing length and hence esti-
€ the tumbling index or ultrametric distance. By

weighting the selection of samples by the likelihood of er-
rors, the correct values of P and A can then be obtained.
These quantities can in turn be used to estimate the relia-
bility of the system. We should point out that although
some architectures have a treelike layout, it is not possible
to make an a priori connection between the architecture
and the tree corresponding to the map that it implements.

V. CONCLUSION

In this paper, we have developed a theory that provides
a natural language for describing the global behavior of
discrete dynamical systems which are both finite and dis-
sipative. By considering the combinatorial properties of
discrete maps, we were able to obtain quantitative defini-
tions of the parameters relevant to the dynamics of such
systems. Thus, unlike continuous dynamical systems, at-
tractors on finite sets produce behavior characterized by
exact recovery from fluctuations in a finite amount of
time. This result has a direct implication for the time
evolution of computing structures and can also be applied
to other complex systems with hierarchical structures.

An important extension of this theory relates to adapta-
tion and time-dependent maps, particularly if the change
depends on the time sequence of inputs. In this way, the
maps become active participants in the dynamics and pro-
vide a much richer set of possible behaviors. This varia-
tion could be due to loops in which the output of a partic-
ular step forms part of the next input to that step, or,
more generally, the form of the map could depend on the
past history of all inputs. This possibility occurs in adap-
tive systems of the type that we studied earlier. In that
case, one is interested in studying the reliability of such
computing structures against perturbations in either data
or the maps themselves. This paper suggests a crisp
methodology for doing so. For example, one can deter-
mine the stability of the system to perturbations that
change the maps by measuring quantities such as the tum-
bling index.. Also, a determination of the variability in the
branching ratio of the tree produced by such structures
would give an indication of their degree of complexity.
Finally, since real computers operate in a world with con-’
straints, our calculations provide an estimate of the
trade-off between reliability and capacity to satisfy those
constraints.
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APPENDIX

In this appendix we derive generating functions for the
H numbers from their recursion relations. First, we note
that the generating function for the modified multinomi-
als [’l;ll,kz, e ,k,.] i$7
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1 = xkt" m
m! t§| k!
CXY
= 2 F 2 ["’AI’AZ» yAn]
A=m ’ A'1 A’l """ )"l

: A
XXX X e X", (A1)

where the sum over A;'s is restricted to values satisfying
both 37_,iA;=n and 37_,A;=m. The recursion rela-
tion for H",, Eq. (16), involves a sum in which the A’s
are only restricted to values satisfying 3.7_ iA;=n. Thus
it is necessary to sum Eq. (A1) from m =1 to ». Using
Eq. (16) we then have

Sp(t)=exp[Sm_1(D]—1, (A2)

where we have defined the generating function

Sm(t)=3 t"H* /k!. (A3
k=1
Note that H*, can be obtained from S, (t) by differentia-
tion, i.e.,
dk
H*,=—5,(1) (Ad)
" dtk " t=0

and Sy(¢)=t since H*y=6;,. From Eq. (A2) we see that
S (t) can be expressed as a series of iterated exponentials.
For example, S,(¢)=exp(e’—1)—1 which is the generat-
ing function for the Bell numbers.®

Finally, we should point out that a similar set of func-
tions can be derived for the tumbling indices A", based
on the recursion relation given in Eq. (21).
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