OFFSET
0,2
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..400
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
N. J. A. Sloane, Transforms.
FORMULA
E.g.f.: (sec(x) + tan(x))*exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)). - Sergei N. Gladkovskii, Oct 30 2014
a(n) ~ n! * exp(Pi) * (BesselI(0, Pi) - BesselI(1, Pi)) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Oct 30 2014
MATHEMATICA
CoefficientList[Series[E^(2*x) * (BesselI[0, 2*x] - BesselI[1, 2*x]) * (Sec[x] + Tan[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 30 2014 after Sergei N. Gladkovskii *)
PROG
(Haskell)
a000753 n = sum $ zipWith (*) (a109449_row n) a000108_list
-- Reinhard Zumkeller, Nov 05 2013
(Python)
from itertools import accumulate, count, islice
def A000753_gen(): # generator of terms
blist, c = tuple(), 1
for i in count(0):
yield (blist := tuple(accumulate(reversed(blist), initial=c)))[-1]
c = c*(4*i+2)//(i+2)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved