login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000752 Boustrophedon transform of powers of 2. 4
1, 3, 9, 28, 93, 338, 1369, 6238, 31993, 183618, 1169229, 8187598, 62545893, 517622498, 4613366689, 44054301358, 448733127793, 4856429646978, 55650582121749, 673136951045518, 8570645832753693, 114581094529057058 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..400

Peter Luschny, An old operation on sequences: the Seidel transform

J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon on transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).

N. J. A. Sloane, Transforms

Wikipedia, Boustrophedon_transform

Index entries for sequences related to boustrophedon transform

FORMULA

E.g.f.: exp(2x) (tan x + sec x).

a(n) = sum(A109449(n,k)*2^k: k=0..n). - Reinhard Zumkeller, Nov 03 2013

G.f.: E(0)*x/(1-2*x)/(1-3*x) + 1/(1-2*x), where E(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(x*(k+3)-1)*(x*(k+4)-1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2014

a(n) ~ n! * exp(Pi) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015

MATHEMATICA

t[n_, 0] := 2^n; t[n_, k_] := t[n, k] = t[n, k - 1] + t[n - 1, n - k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)

PROG

(Haskell)

a000752 n = sum $ zipWith (*) (a109449_row n) a000079_list

-- Reinhard Zumkeller, Nov 03 2013

CROSSREFS

Cf. A000079, A000734.

Sequence in context: A081914 A120985 A014323 * A047027 A148931 A243599

Adjacent sequences:  A000749 A000750 A000751 * A000753 A000754 A000755

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 25 22:15 EDT 2017. Contains 288730 sequences.