login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000705
n-th superior highly composite number A002201(n) is product of first n terms of this sequence.
(Formerly M0423 N0162)
10
2, 3, 2, 5, 2, 3, 7, 2, 11, 13, 2, 3, 5, 17, 19, 2, 23, 7, 29, 3, 31, 2, 37, 41, 43, 47, 5, 53, 59, 2, 11, 61, 3, 67, 71, 73, 79, 13, 83, 89, 2, 97, 101, 103, 107, 7, 109, 113, 17, 127, 131, 137, 139, 3, 5, 149, 151, 19, 2, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
OFFSET
1,1
COMMENTS
The Mathematica program uses the fact that the ratio of consecutive superior highly composite numbers is a prime, which was proved by Ramanujan. Ramanujan computed the first 50 terms of this sequence. Related sequences are A004490 and A073751, having to do with colossally abundant numbers.
REFERENCES
S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. 115.
S. Ramanujan, Ramanujan's Papers, pp. 147-9, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MATHEMATICA
pFactor[f_List] := Module[{p = f[[1]], k = f[[2]]}, N[Log[(k + 2)/(k + 1)]/Log[p]]]; maxN = 100; f = {{2, 1}, {3, 0}}; primes = 1; lst = {2}; x = Table[pFactor[f[[i]]], {i, primes + 1}]; For[n = 2, n <= maxN, n++, i = Position[x, Max[x]][[1, 1]]; AppendTo[lst, f[[i, 1]]]; f[[i, 2]]++; If[i > primes, primes++; AppendTo[f, {Prime[i + 1], 0}]; AppendTo[x, pFactor[f[[ -1]]]]]; x[[i]] = pFactor[f[[i]]]]; lst (* T. D. Noe, Nov 01 2002 *)
CROSSREFS
Sequence in context: A027748 A361650 A328852 * A073751 A319431 A258581
KEYWORD
nonn,easy,nice
EXTENSIONS
Edited by T. D. Noe, Nov 01 2002
STATUS
approved