This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000706 Expansion of modular function 1/E_3 (cf. A013973). (Formerly M5458 N2367) 11
 1, 504, 270648, 144912096, 77599626552, 41553943041744, 22251789971649504, 11915647845248387520, 6380729991419236488504, 3416827666558895485479576, 1829682703808504464920468048, 979779820147442370107345764512 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973). REFERENCES S. Ramanujan, Collected Papers of Srinivasa Ramanujan, pp. 115-7, Ed. G. H. Hardy et al., AMS Chelsea 2000, p. 317. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..360 S. Ramanujan, On the coefficients in the expansions of certain modular functions, Proc. Royal Soc., A, 95 (1918), 144-155 [G. H. Hardy, Coll. Papers, Vol. 1, 294-305.] - Added by N. J. A. Sloane, Feb 21 2010 FORMULA Expansion of 1 / R(q) in powers of q where R() is a Ramanujan Lambert series. G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^2*w^2 + 121*u^2*w^2 + 4096*u^2*v^2 - 8*v^3*w - 512*u*v^3 - 66*u*v*w^2 + 592*u*v^2*w - 4224*u^2*v*w. - Michael Somos, Aug 09 2007 Convolution inverse of A013973. Asymptotics [Ramanujan]: a(n) ~ c * exp(2*Pi*n), where c = 2 / (96^2 * exp(-8*Pi/3) * Product_{j>=1} (1-exp(-4*Pi*j))^16) = 8192 * Pi^12 / (9 * Gamma(1/4)^16) = 0.943732053240742502013763912292610373458373085328537967959184338319972... . - Vaclav Kotesovec, Nov 08 2015 EXAMPLE G.f. = 1 + 504*q + 270648*q^2 + 144912096*q^3 + 77599626552*q^4 + 41553943041744*q^5 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ 1 / (1 + Sum[ -504 DivisorSigma[ 5, k] q^k, {k, n}]), {q, 0, n}]; (* Michael Somos, Apr 26 2015 *) a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, 1 / (t2^3 - 33 (t2 + t3) t2 t3 + t3^3)], {q, 0, n}]; (* Michael Somos, Apr 26 2015 *) a[ n_] := SeriesCoefficient[ With[ {t3 = EllipticTheta[ 3, 0, q]^4, t4 = EllipticTheta[ 4, 0, q]^4}, 2 / (t3^3 - 3 (t3 - t4)^2 (t3 + t4) + t4^3) ], {q, 0, 2 n}]; (* Michael Somos, Apr 26 2015 *) a[ n_] := SeriesCoefficient[ With[ {e1 = QPochhammer[ q]^8, e4 = 32 q QPochhammer[ q^4]^8}, QPochhammer[ q^2]^12 / ((e1 + e4) (e1^2 - 16 e1 e4 - 8 e4^2)) ], {q, 0, n}]; (* Michael Somos, Apr 26 2015 *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( 1 / sum(k=1, n, -504*sigma(k, 5)*x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Aug 09 2007 */ (PARI) {a(n) = my(A, e1, e4); if( n<0, 0, A = x * O(x^n); e1 = eta(x + A)^8; e4 = 32 * x * eta(x^4 + A)^8; polcoeff( eta(x^2 + A)^12 / ((e1 + e4) * (e1^2 - 16*e1*e4 - 8*e4^2)), n))}; /* Michael Somos, Apr 26 2015 */ CROSSREFS Cf. A013973, A259150. Sequence in context: A288851 A105097 A278308 * A289637 A226266 A278371 Adjacent sequences:  A000703 A000704 A000705 * A000707 A000708 A000709 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 04:33 EDT 2019. Contains 328026 sequences. (Running on oeis4.)