This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000704 Number of degree-n even permutations of order dividing 2. (Formerly M3511 N1427) 13
 1, 1, 1, 1, 4, 16, 46, 106, 316, 1324, 5356, 18316, 63856, 272416, 1264264, 5409496, 22302736, 101343376, 507711376, 2495918224, 11798364736, 58074029056, 309240315616, 1670570920096, 8792390355904, 46886941456576, 264381946998976, 1533013006902976 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of odd partitions of an n-element set avoiding the pattern 123 (see Goyt paper). - Ralf Stephan, May 08 2007 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=0..200 A. M. Goyt, Avoidance of partitions of a 3-element set L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168. FORMULA E.g.f.: e^x cosh ( x^2 / 2 ). a(n) = sum[i = 0, floor(n/4), C(n, 4i)*(4i-1)!! ]. - Ralf Stephan, May 08 2007 [Corrected by Sean A. Irvine, Mar 01 2011] Conjecture: a(n) -3*a(n-1) +3*a(n-2) -a(n-3) -(n-1)*(n-3)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 03 2014 MATHEMATICA f[n_] := Sum[(4i - 1)!! Binomial[n, 4i], {i, 0, n/4}]; Array[f, 22, 0] (* Robert G. Wilson v *) With[{nn = 30}, CoefficientList[Series[Exp[x]Cosh[x^2/2], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 29 2013 *) CROSSREFS Sequence in context: A097125 A213480 A159940 * A007315 A055342 A213292 Adjacent sequences:  A000701 A000702 A000703 * A000705 A000706 A000707 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Harvey P. Dale, Nov 29 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 20:57 EST 2019. Contains 319282 sequences. (Running on oeis4.)