OFFSET
0,2
REFERENCES
Volker Strehl, Binomial identities - combinatorial and algorithmic aspects. Trends in discrete mathematics. Discrete Math. 136 (1994), no. 1-3, 309-346.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..100
Vaclav Kotesovec, Recurrence (of order 6)
FORMULA
Sum binomial(n, k)^2 * binomial(2k, k)^2 * binomial(2k, n-k); k=0..n.
a(n) ~ 7^(2*n+5/2) / (20 * sqrt(15) * Pi^2 * n^2). - Vaclav Kotesovec, Mar 09 2014
MAPLE
A000658:=n->add(binomial(n, k)^2*binomial(2*k, k)^2*binomial(2*k, n-k), k=0..n): seq(A000658(n), n=0..15); # Wesley Ivan Hurt, Sep 19 2014
MATHEMATICA
Table[Sum[Binomial[n, k]^2 Binomial[2k, k]^2 Binomial[2k, n-k], {k, 0, n}], {n, 0, 25}] (* Harvey P. Dale, Oct 19 2011 *)
PROG
(PARI) a(n)=sum(k=1, n, binomial(n, k)^2 * binomial(2k, k)^2 * binomial(2k, n-k)) \\ Charles R Greathouse IV, Sep 19 2014
(Haskell)
a000658 n = sum $ map c3 [0..n] where
c3 k = (a007318' n k)^2 * (a007318' (2*k) k)^2 * a007318' (2*k) (n-k)
-- Reinhard Zumkeller, May 20 2015
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved