login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000658
Strehl's sequence "C_n^(3)".
3
1, 4, 68, 1732, 51076, 1657904, 57793316, 2117525792, 80483121028, 3147565679824, 125937573689968, 5133632426499152, 212530848994367524, 8914634034287235856, 378138515326996979168, 16196097181014298854032
OFFSET
0,2
REFERENCES
Volker Strehl, Binomial identities - combinatorial and algorithmic aspects. Trends in discrete mathematics. Discrete Math. 136 (1994), no. 1-3, 309-346.
LINKS
Vaclav Kotesovec, Recurrence (of order 6)
FORMULA
Sum binomial(n, k)^2 * binomial(2k, k)^2 * binomial(2k, n-k); k=0..n.
a(n) ~ 7^(2*n+5/2) / (20 * sqrt(15) * Pi^2 * n^2). - Vaclav Kotesovec, Mar 09 2014
MAPLE
A000658:=n->add(binomial(n, k)^2*binomial(2*k, k)^2*binomial(2*k, n-k), k=0..n): seq(A000658(n), n=0..15); # Wesley Ivan Hurt, Sep 19 2014
MATHEMATICA
Table[Sum[Binomial[n, k]^2 Binomial[2k, k]^2 Binomial[2k, n-k], {k, 0, n}], {n, 0, 25}] (* Harvey P. Dale, Oct 19 2011 *)
PROG
(PARI) a(n)=sum(k=1, n, binomial(n, k)^2 * binomial(2k, k)^2 * binomial(2k, n-k)) \\ Charles R Greathouse IV, Sep 19 2014
(Haskell)
a000658 n = sum $ map c3 [0..n] where
c3 k = (a007318' n k)^2 * (a007318' (2*k) k)^2 * a007318' (2*k) (n-k)
-- Reinhard Zumkeller, May 20 2015
CROSSREFS
Third row of array A094424.
Cf. A007318.
Sequence in context: A141032 A156084 A362730 * A351027 A156470 A326288
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved