OFFSET
0,2
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..400
Peter Luschny, An old operation on sequences: the Seidel transform
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
N. J. A. Sloane, Transforms
Wikipedia, Boustrophedon transform
FORMULA
E.g.f.: (x*exp(x) + 1)*(sec(x) + tan(x)). - Sergei N. Gladkovskii, Oct 28 2014
a(n) ~ n! * (2 + Pi*exp(Pi/2)) * (2/Pi)^(n+1). - Vaclav Kotesovec, Jun 12 2015
MAPLE
seq(coeff(series(factorial(n)*(x*exp(x)+1)*(sec(x)+tan(x)), x, n+1), x, n), n=0..25); # Muniru A Asiru, Jul 30 2018
MATHEMATICA
a[n_] := n! SeriesCoefficient[(1+x Exp[x])(1+Sin[x])/Cos[x], {x, 0, n}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 30 2018, after Sergei N. Gladkovskii *)
PROG
(Sage) # Algorithm of L. Seidel (1877)
def A000660_list(n) :
R = []; A = {-1:0, 0:1}
k = 0; e = 1
for i in range(n) :
Am = i
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
print([A[z] for z in (-i//2..i//2)])
R.append(A[e*i//2])
return R
A000660_list(10) # Peter Luschny, Jun 02 2012
(Haskell)
a000660 n = sum $ zipWith (*) (a109449_row n) (1 : [1..])
-- Reinhard Zumkeller, Nov 04 2013
(Python)
from itertools import accumulate, count, islice
def A000660_gen(): # generator of terms
yield 1
blist = (1, )
for i in count(1):
yield (blist := tuple(accumulate(reversed(blist), initial=i)))[-1]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved