This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094424 Array read by antidiagonals: Solutions to Schmidt's Problem. 5
 1, 1, 1, 1, 2, 1, 1, 4, 10, 1, 1, 8, 68, 56, 1, 1, 16, 424, 1732, 346, 1, 1, 32, 2576, 48896, 51076, 2252, 1, 1, 64, 15520, 1383568, 6672232, 1657904, 15184, 1, 1, 128, 93248, 39776000, 873960976, 1022309408, 57793316, 104960, 1, 1, 256, 559744, 1159151680, 116758856608, 615833930816, 176808084544, 2117525792, 739162, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS T(r,k) satisfies sum[k=0,n, C(n,k)^r*C(n+k,k)^r] = sum[k=0,n, C(n,k)*C(n+k,k)*T(r,k)] for all n=0,1,2,3... LINKS Eric Weisstein's World of Mathematics, Schmidt's Problem W. Zudilin, On a combinatorial problem of Asmus Schmidt, Electron. J. Combin. 11:1 (2004), #R22, 8 pages. FORMULA Zudilin gives a complicated general formula involving binomial coefficients, thus proving that all T(r, k) are integers. EXAMPLE 1 1 1 1 1 1 1 2 10 56 346 2252 1 4 68 1732 51076 1657904 1 8 424 48896 6672232 1022309408 1 16 2576 1383568 873960976 615833930816 1 32 15520 39776000 116758856608 371558588978432 MATHEMATICA eq[r_, n_] := eq[r, n] = Sum[Binomial[n, k]^r*Binomial[n + k, k]^r, {k, 0, n}] == Sum[Binomial[n, k]*Binomial[n + k, k]*t[r, k], {k, 0, n}]; c[r_, k_] := t[r, k] /. Solve[Table[eq[r, n], {n, 0, k}], t[r, k]] // First; lg = 10; m = Table[c[r, k], {r, 1, lg}, {k, 0, lg - 1}]; Flatten[ Table[ Reverse @ Diagonal[ Reverse /@ m, k], {k, lg - 1, -lg + 1, -1}]][[1 ;; 55]] (* Jean-François Alcover, Jul 20 2011 *) PROG (PARI) A094424row(r, kmax)={ local(nmat, rhs, cv) ; nmat=matrix(kmax+1, kmax+1) ; rhs=matrix(kmax+1, 1) ; for(n=0, kmax, for(k=0, kmax, nmat[n+1, k+1]=binomial(n, k)*binomial(n+k, k) ; ) ; rhs[n+1, 1]=sum(i=0, n, binomial(n, i)^r*binomial(n+i, i)^r) ; ) ; cv=matsolve(nmat, rhs) ; } A094424(nmax)={ local(T, c) ; T=matrix(nmax, nmax) ; for(r=1, nmax, c=A094424row(r, nmax-1) ; for(i=1, nmax, T[r, i]=c[i, 1] ; ) ; ) ; return(T) ; } { rmax=10 ; T=A094424(rmax) ; for(d=0, rmax-1, for(c=0, d, print1(T[d-c+1, c+1], ", ") ; ) ; ) ; } - R. J. Mathar, Oct 06 2006 CROSSREFS Rows 2-4 are A000172, A000658, A092868. Columns 2-3 seem to be A000079, A081656. Sequence in context: A213786 A055130 A051292 * A265241 A166888 A083677 Adjacent sequences:  A094421 A094422 A094423 * A094425 A094426 A094427 KEYWORD nonn,tabl AUTHOR Ralf Stephan, May 16 2004 EXTENSIONS More terms from R. J. Mathar, Oct 06 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 14:15 EST 2019. Contains 329806 sequences. (Running on oeis4.)