This site is supported by donations to The OEIS Foundation.

# Template:Int/doc

This documentation subpage contains instructions, categories, or other information for Template:Int. [<Edit> Template:Int]

[⧼Purge⧽ Template:Int/doc]

(Firefox and Google Chrome and MS Edge: good results! )
(Not the fault of the {{math}} template: MS Edge chops LaTeX PNG's, whether or not we use the {{math}} template! (See #Tests.)

The {{int}} mathematical formatting template calls the {{integral}} template with the type argument set to int (simple integral).

## Usage

{{int|lower limit|upper limit|integrand}}

or

{{int|lower limit|upper limit|integrand|format}}

or

{{int|lower limit|upper limit}} integrand

or

{{int|lower limit|upper limit|format}} integrand

where format is among:

• htm: text style HTML+CSS (default);
• tex: text style LaTeX;
• HTM: display style HTML+CSS;
• TEX: display style LaTeX.

## Examples

The code

: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}}}|tex = \int_{0}^{1} x^3 dx|&}} and <!--
-->{{math|{{int|0|1}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|&}} after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}

yields the text style HTML+CSS

before
 1 0
x 3dx
and
 1 0
x 3dx
after

The code

: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}}}|tex = \int_{0}^{1} x^3 dx|$}} and <!-- -->{{math|{{int|0|1}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|$}} after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}

yields the text style LaTeX

before ${\displaystyle \textstyle {\int _{0}^{1}x^{3}dx}}$ and ${\displaystyle \textstyle {\int _{0}^{1}x^{3}dx}}$ after

The code

: {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}|HTM}}|tex = \int_{0}^{1} x^3 dx|&&}} and {{math|{{int|0|1|HTM}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|&&}}

yields the display style HTML+CSS

 1 0
x 3dx
and
 1 0
x 3dx

The code

: {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}|HTM}}|tex = \int_{0}^{1} x^3 dx|$$}} and {{math|{{int|0|1|HTM}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|$$}}

yields the display style LaTeX

${\displaystyle {\begin{array}{l}\displaystyle {\int _{0}^{1}x^{3}dx}\end{array}}}$ and ${\displaystyle {\begin{array}{l}\displaystyle {\int _{0}^{1}x^{3}dx}\end{array}}}$

The code

: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{Gr|Gamma}}(''z'') {{=}} <!--
-->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|2}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|&}} <!--
-->after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}

yields the text style HTML+CSS

before
Γ(z) =
 ∞ 0
e  −  t  t  z  − 1dt
after

The code

: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{Gr|Gamma}}(''z'') {{=}} <!--
-->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|2}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|\$}} <!--
-->after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}

yields the text style LaTeX

before ${\displaystyle \textstyle {\Gamma (z)=\int _{0}^{\infty }e^{-t}t^{z-1}dt}}$ after

The code

: {{math|{{Gr|Gamma}}(''z'') {{=|sp}} <!--
-->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|1}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}|HTM}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|&&}}

yields the display style HTML+CSS

Γ(z)  =
 ∞ 0
e  −  t  tz  − 1dt

The code

: {{math|{{Gr|Gamma}}(''z'') {{=|sp}} <!--
-->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|1}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}|HTM}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|$$}} yields the display style style LaTeX ${\displaystyle {\begin{array}{l}\displaystyle {\Gamma (z)=\int _{0}^{\infty }e^{-t}t^{z-1}dt}\end{array}}}$ The code : A053003: [[Simple continued fraction]] for [[Gauß's constant|Gauß{{'}}s constant]] <!-- -->{{math |{{tfrac|2|{{Gr|pi}}}} {{int|0|1|{{tfrac|1|{{sqrt|1 {{op|-}} ''x''{{^|4}}}}}}{{sp|3}}{{d|''x''}}}}{{sp|1}}. |tex = \frac{ 2 }{ \pi } \int_{0}^{1} \frac{ 1 }{ \sqrt{1 - x^4} } \, dx . |&}}  yields the text style HTML+CSS A053003: Simple continued fraction for Gauß’s constant  2 π  1 0  1 2√ 1 − x 4 dx . and with the  option, yields the text style LaTeX A053003: Simple continued fraction for Gauß’s constant ${\displaystyle \textstyle {{\frac {2}{\pi }}\int _{0}^{1}{\frac {1}{\sqrt {1-x^{4}}}}\,dx.}}$ The code : {{math |{{frac|2|{{Gr|pi}}}} {{int|0|1|{{frac|1|{{sqrt|1 {{op|-}} ''x''{{^|4}}}}}}{{sp|3}}{{d|''x''}}|HTM}}{{sp|1}}. |tex = \frac{ 2 }{ \pi } \int_{0}^{1} \frac{ 1 }{ \sqrt{1 - x^4} } \, dx . |&&}}  yields the display style HTML+CSS  2 π  1 0  1 2√ 1 − x 4 dx . and with the $$ option, yields the display style LaTeX

${\displaystyle {\begin{array}{l}\displaystyle {{\frac {2}{\pi }}\int _{0}^{1}{\frac {1}{\sqrt {1-x^{4}}}}\,dx.}\end{array}}}$

## Tests

The code

: $\int_{0}^{1} x^3 dx$ and {{math|\int_{0}^{1} x^3 dx|$$}} yields the display style LaTeX (Not the fault of the {{math}} template: MS Edge chops LaTeX PNG's, whether or not we use the {{math}} template!) ${\displaystyle \int _{0}^{1}x^{3}dx}$ and${\displaystyle {\begin{array}{l}\displaystyle {\int _{0}^{1}x^{3}dx}\end{array}}}$ The code : $\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt$ and {{math|\Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|$$}}

yields the display style LaTeX (Not the fault of the {{math}} template: MS Edge chops LaTeX PNG's, whether or not we use the {{math}} template!)

${\displaystyle \Gamma (z)=\int _{0}^{\infty }e^{-t}t^{z-1}dt}$ and${\displaystyle {\begin{array}{l}\displaystyle {\Gamma (z)=\int _{0}^{\infty }e^{-t}t^{z-1}dt}\end{array}}}$

## Code

{{integral|int|{{{1|}}}|{{{2|}}}|{{{3|}}}|{{{4|}}}}}