This site is supported by donations to The OEIS Foundation.

Template:Int/doc

From OeisWiki
Jump to: navigation, search

This documentation subpage contains instructions, categories, or other information for Template:Int. [<Edit> Template:Int]

[⧼Purge⧽ Template:Int/doc]

(Firefox and Google Chrome and MS Edge: good results! Green tickY)
(Not the fault of the {{math}} template: MS Edge chops LaTeX PNG's, whether or not we use the {{math}} template! (See #Tests.)


The {{int}} mathematical formatting template calls the {{integral}} template with the type argument set to int (simple integral).

Usage

{{int|lower limit|upper limit|integrand}}

or

{{int|lower limit|upper limit|integrand|format}}

or

{{int|lower limit|upper limit}} integrand

or

{{int|lower limit|upper limit|format}} integrand

where format is among:

  • htm: text style HTML+CSS (default);
  • tex: text style LaTeX;
  • HTM: display style HTML+CSS;
  • TEX: display style LaTeX.

Examples

The code

: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}}}|tex = \int_{0}^{1} x^3 dx|&}} and <!--
-->{{math|{{int|0|1}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|&}} after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}

yields the text style HTML+CSS

yadda yadda yadda yadda yadda 
yadda yadda yadda yadda yadda 
before
1
0
x 3dx
and
1
0
x 3dx
after
yadda yadda yadda yadda yadda 
yadda yadda yadda yadda yadda 

The code

: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}}}|tex = \int_{0}^{1} x^3 dx|$}} and <!--
-->{{math|{{int|0|1}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|$}} after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}

yields the text style LaTeX

yadda yadda yadda yadda yadda 
yadda yadda yadda yadda yadda 
before and after
yadda yadda yadda yadda yadda 
yadda yadda yadda yadda yadda 

The code

: {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}|HTM}}|tex = \int_{0}^{1} x^3 dx|&&}} and {{math|{{int|0|1|HTM}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|&&}}

yields the display style HTML+CSS

1
0
x 3dx
and
1
0
x 3dx

The code

: {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}|HTM}}|tex = \int_{0}^{1} x^3 dx|$$}} and {{math|{{int|0|1|HTM}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|$$}}

yields the display style LaTeX

and

The code

: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{Gr|Gamma}}(''z'') {{=}} <!--
-->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|2}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|&}} <!--
-->after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}

yields the text style HTML+CSS

yadda yadda yadda yadda yadda 
yadda yadda yadda yadda yadda 
before
Γ(z) =
0
e  −  t  t  z  − 1dt
after
yadda yadda yadda yadda yadda 
yadda yadda yadda yadda yadda 

The code

: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{Gr|Gamma}}(''z'') {{=}} <!--
-->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|2}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|$}} <!--
-->after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}

yields the text style LaTeX

yadda yadda yadda yadda yadda 
yadda yadda yadda yadda yadda 
before after
yadda yadda yadda yadda yadda 
yadda yadda yadda yadda yadda 

The code

: {{math|{{Gr|Gamma}}(''z'') {{=|sp}} <!--
-->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|1}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}|HTM}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|&&}}

yields the display style HTML+CSS

Γ(z)  = 
0
e  −  t  tz  − 1dt

The code

: {{math|{{Gr|Gamma}}(''z'') {{=|sp}} <!--
-->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|1}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}|HTM}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|$$}}

yields the display style style LaTeX

The code

: A053003: [[Simple continued fraction]] for [[Gauß's constant|Gauß{{'}}s constant]] <!--
-->{{math
|{{tfrac|2|{{Gr|pi}}}} {{int|0|1|{{tfrac|1|{{sqrt|1 {{op|-}} ''x''{{^|4}}}}}}{{sp|3}}{{d|''x''}}}}{{sp|1}}.
|tex = \frac{ 2 }{ \pi } \int_{0}^{1} \frac{ 1 }{ \sqrt{1 - x^4} } \, dx .
|&}}

yields the text style HTML+CSS

A053003: Simple continued fraction for Gauß’s constant
2
π
1
0
1
2  1  −  x 4
dx .

and with the $ option, yields the text style LaTeX

A053003: Simple continued fraction for Gauß’s constant

The code

: {{math
|{{frac|2|{{Gr|pi}}}} {{int|0|1|{{frac|1|{{sqrt|1 {{op|-}} ''x''{{^|4}}}}}}{{sp|3}}{{d|''x''}}|HTM}}{{sp|1}}.
|tex = \frac{ 2 }{ \pi } \int_{0}^{1} \frac{ 1 }{ \sqrt{1 - x^4} } \, dx .
|&&}}

yields the display style HTML+CSS

2
π
1
0
1
2  1 − x 4
dx .

and with the $$ option, yields the display style LaTeX

Tests

The code

: <math>\int_{0}^{1} x^3 dx</math> and {{math|\int_{0}^{1} x^3 dx|$$}}

yields the display style LaTeX (Not the fault of the {{math}} template: MS Edge chops LaTeX PNG's, whether or not we use the {{math}} template!)

and

The code

: <math>\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt</math> and {{math|\Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|$$}}

yields the display style LaTeX (Not the fault of the {{math}} template: MS Edge chops LaTeX PNG's, whether or not we use the {{math}} template!)

and

Code

{{integral|int|{{{1|}}}|{{{2|}}}|{{{3|}}}|{{{4|}}}}}

See also

  • {{integral}} (type argument: int, iint, iiint, iiiint, idotsint, oint, varointclockwise, ointctrclockwise, oiint, oiiint)




External links