This site is supported by donations to The OEIS Foundation.
Template:Int
[⧼Purge⧽ Template:Int]
(Firefox and Google Chrome and MS Edge: good results!
(Not the fault of the {{math}} template: MS Edge chops LaTeX PNG's, whether or not we use the {{math}} template! (See #Tests.)
The {{int}} mathematical formatting template calls the {{integral}} template with the type
argument set to int
(simple integral).
Contents
Usage
- {{int|lower limit|upper limit|integrand}}
or
- {{int|lower limit|upper limit|integrand|format}}
or
- {{int|lower limit|upper limit}} integrand
or
- {{int|lower limit|upper limit|format}} integrand
where format is among:
- htm: text style HTML+CSS (default);
- tex: text style LaTeX;
- HTM: display style HTML+CSS;
- TEX: display style LaTeX.
Examples
The code
: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}}}|tex = \int_{0}^{1} x^3 dx|&}} and <!-- -->{{math|{{int|0|1}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|&}} after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}
yields the text style HTML+CSS
- yadda yadda yadda yadda yadda
yadda yadda yadda yadda yadda
before
and
x 3 d x∫ 1 0
after
x 3 d x∫ 1 0
yadda yadda yadda yadda yadda
yadda yadda yadda yadda yadda
The code
: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}}}|tex = \int_{0}^{1} x^3 dx|$}} and <!-- -->{{math|{{int|0|1}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|$}} after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}
yields the text style LaTeX
- yadda yadda yadda yadda yadda
yadda yadda yadda yadda yadda
before and after
yadda yadda yadda yadda yadda
yadda yadda yadda yadda yadda
The code
: {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}|HTM}}|tex = \int_{0}^{1} x^3 dx|&&}} and {{math|{{int|0|1|HTM}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|&&}}
yields the display style HTML+CSS
- and
x 3 d x∫ 1 0
x 3 d x∫ 1 0
The code
: {{math|{{int|0|1|''x''{{^|3}}{{sp|3}}{{d|''x''}}|HTM}}|tex = \int_{0}^{1} x^3 dx|$$}} and {{math|{{int|0|1|HTM}} ''x''{{^|3}}{{sp|3}}{{d|''x''}}|tex = \int_{0}^{1} x^3 dx|$$}}
yields the display style LaTeX
- and
The code
: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{Gr|Gamma}}(''z'') {{=}} <!-- -->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|2}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|&}} <!-- -->after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}
yields the text style HTML+CSS
- yadda yadda yadda yadda yadda
yadda yadda yadda yadda yadda
before
afterΓ(z) =
e − t t z − 1 d t∫ ∞ 0
yadda yadda yadda yadda yadda
yadda yadda yadda yadda yadda
The code
: {{repeat|2|{{repeat|5|yadda{{nbsp}}}}{{nl}}}}before {{math|{{Gr|Gamma}}(''z'') {{=}} <!-- -->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|2}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|$}} <!-- -->after{{repeat|2|{{nl}}{{repeat|5|yadda{{nbsp}}}}}}
yields the text style LaTeX
- yadda yadda yadda yadda yadda
yadda yadda yadda yadda yadda
before after
yadda yadda yadda yadda yadda
yadda yadda yadda yadda yadda
The code
: {{math|{{Gr|Gamma}}(''z'') {{=|sp}} <!-- -->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|1}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}|HTM}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|&&}}
yields the display style HTML+CSS
-
Γ(z) =
e − t t z − 1 d t∫ ∞ 0
The code
: {{math|{{Gr|Gamma}}(''z'') {{=|sp}} <!-- -->{{int|0|infty|''e''{{^|{{op|-}}{{sp|1}}''t''}}{{sp|2}}''t''{{sp|1}}{{^|''z''{{sp|1}}{{op|-}}1}}{{sp|3}}{{d|''t''}}|HTM}}|tex = \Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|$$}}
yields the display style style LaTeX
The code
: A053003: [[Simple continued fraction]] for [[Gauß's constant|Gauß{{'}}s constant]] <!-- -->{{math |{{tfrac|2|{{Gr|pi}}}} {{int|0|1|{{tfrac|1|{{sqrt|1 {{op|-}} ''x''{{^|4}}}}}}{{sp|3}}{{d|''x''}}}}{{sp|1}}. |tex = \frac{ 2 }{ \pi } \int_{0}^{1} \frac{ 1 }{ \sqrt{1 - x^4} } \, dx . |&}}
yields the text style HTML+CSS
- A053003: Simple continued fraction for Gauß’s constant
2 π ∫ 1 0
d x .1 √ 1 − x 4
and with the $
option, yields the text style LaTeX
The code
: {{math |{{frac|2|{{Gr|pi}}}} {{int|0|1|{{frac|1|{{sqrt|1 {{op|-}} ''x''{{^|4}}}}}}{{sp|3}}{{d|''x''}}|HTM}}{{sp|1}}. |tex = \frac{ 2 }{ \pi } \int_{0}^{1} \frac{ 1 }{ \sqrt{1 - x^4} } \, dx . |&&}}
yields the display style HTML+CSS
-
2 π ∫ 1 0
d x .1 √ 1 − x 4
and with the $$
option, yields the display style LaTeX
Tests
The code
: <math>\int_{0}^{1} x^3 dx</math> and {{math|\int_{0}^{1} x^3 dx|$$}}
yields the display style LaTeX (Not the fault of the {{math}} template: MS Edge chops LaTeX PNG's, whether or not we use the {{math}} template!)
- and
The code
: <math>\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt</math> and {{math|\Gamma(z) {{=}} \int_{0}^{\infty} e^{-t} t^{z-1} dt|$$}}
yields the display style LaTeX (Not the fault of the {{math}} template: MS Edge chops LaTeX PNG's, whether or not we use the {{math}} template!)
- and
Code
-
{{integral|int|{{{1|}}}|{{{2|}}}|{{{3|}}}|{{{4|}}}}}
See also
- {{integral}} (type argument: int, iint, iiint, iiiint, idotsint, oint, varointclockwise, ointctrclockwise, oiint, oiiint)
- {{int}} (simple integral: {{integral}} with int as type argument)
- {{iint}} (double integral: {{integral}} with iint as type argument)
- {{iiint}} (triple integral: {{integral}} with iiint as type argument)
- {{iiiint}} (quadruple integral: {{integral}} with iiiint as type argument)
- {{idotsint}} (multiple integral: {{integral}} with idotsint as type argument)
- {{oint}} ([closed] path integral: {{integral}} with oint as type argument)
- {{varointclockwise}} ([closed] clockwise path integral: {{integral}} with varointclockwise as type argument)
- {{ointctrclockwise}} ([closed] counterclockwise path integral: {{integral}} with ointctrclockwise as type argument)
- {{oiint}} ([closed] surface integral: {{integral}} with oiint as type argument)
- {{oiiint}} ([closed] hypersurface integral: {{integral}} with oiiint as type argument)