This site is supported by donations to The OEIS Foundation.

Champernowne constant

From OeisWiki
Jump to: navigation, search


This article page is a stub, please help by expanding it.


The Champernowne constant (named after D. G. Champernowne, and also called Mahler’s number, since Kurt Mahler proved that it is transcendental) is formed by concatenating the positive integers (in base 10) after the decimal point.

Decimal expansion of Champernowne constant

The decimal expansion of Champernowne constant is

C = 0.1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980...

giving the sequence of decimal digits (A033307)

{1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 4, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 5, 4, ...}

Continued fraction for Champernowne constant

The simple continued fraction for Champernowne constant is

     
C = 0 + 
1
8 + 
1
9 + 
1
1 + 
1
149083 + 
1

giving the sequence of integer part and partial quotients (A030167)

{0, 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, 4575401113910310764836466282429561185996039397104575550006620043930902626592563149379532077471286563138641209375503552094607183089984575801469863148833592141783010987, 6, ...}

Base b Champernowne constant

The base b Champernowne constant is formed by concatenating the positive integers in base
b, b   ≥   2,
after the “binary point” (for base 2), or “ternary point” (for base 3), etc.

Base
b
Champernowne constant

b
Cb
Base
b
expansion
Base 10 expansion
Continued fraction (for base 10 expansion, integer part and partial quotients written in base 10)
A-numbers
2 C2 0.110111001011101111000100110101011110011011110111110000100011001010011101001010110110101111... 2

0.8622401258680545715577902832493945785657647427682990945160712145573067405905164580420384414386181334...10
{0, 1, 6, 3, 1, 6, 5, 3, 3, 1, 6, 4, 1, 3, 298, 1, 6, 1, 1, 3, 285, 7, 2, 4, 1, 2, 1, 2, 1, 1, 4534532, 1, 4, 5, 1, 2, 1, 7, 1, 16, 1, 4, 1, 5, 5, 1, 5, 1, 4, 1, 2, 1, 5, 3, 2, 38, 2, 12, 1, 15, 2, 6, 3, 30, 4682854730443938, 1, 1, 68, 1, ...}

A030190
A066716
A066717
3 C3 0.1210111220212210010110211011111212012112220020120221021121222022122210001001100210101011101210201021... 3

0.59895816753843399250017221792943659097820876867610593675478607547965184195280842055407211080527964157...10
{0, 1, 1, 2, 37, 1, 162, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 1, 3068518062211324, 2, 1, 2, 6, 13, 1, 2, 1, 3, 1, 10, 1, 21, 1, 1, 4, 3, 577, 1, 1079268324684171943515797470873767312825026176345571319042096689270, ...}

A054635
A077771
A077772
4 C4 0.123101112132021222330313233100101102103110111112113120121122123130131132133200201202203210... 4

0.42611111111111106576455657142016198509554623896723041068279163517258755310
{0, 2, 2, 1, 7, 1, 1, 2, 1, 1, 1, 1, 6806293849, 1, 33, 157, 1, 2, 1, 3, 1, 1, 2345427263108642344323518197756649380964709224412095403124301722165, 2, 2, 1, 1, 1, 3, 1, 1, 6, 2, 7, 11, 1, 1, 7, 12, 1, 1, 1, 126, 3, 13, 1, 13, 4, 33, 3, 1, 1, 1, 3, 2, 4, 1, 9, 2, ...}

A030373
A378328
A378345
5 C5 0.123410111213142021222324303132333440414243441001011021031041101111121131141201211221231241... 5

0..310736111111111111111111111110963033311604944849115504682622268470343392...10
{0, 3, 4, 1, 1, 2, 2, 18, 1, 20, 1302701925685142513155, 3, 5, 6, 1, 1, 1, 1, 1, 1, 2, 13, 5, 2, 1, 22, 1, 1, ...}

A031219
A378329
A378346
6 C6 0.123451011121314152021222324253031323334354041424344455051525354551001011021031041051101111... 6

0.239862685815066767447719828672209624590576971529350213760693195631576583...10
{0, 4, 5, 1, 10, 1, 4, 3, 9, 1, 2, 2, 1, 1, 699745284439054751106354294914368414245, 2, 5, 1, 20, 22, 2, 2, 1, 10, 3, 1, 2, 2, 2, 1, 1, 2, 1, 1, ...}

A030548
A378330
A378347
7 C7 0.123456101112131415162021222324252630313233343536404142434445465051525354555660616263646566... 7

0.194435535086240521475840093082908576452932971050422112479588531233679088...10
{0, 5, 6, 1, 85, 1, 2, 1, 11, 1, 3, 2, 1, 5, 1, 2, 8697444597678755989498288581049684565698396369776180853037564, 1, 4, 2, 8, 6, 1, 2, 11, 1, 11, 1, 9, 2, 11, 1, 13, 2, 3, 10, ...}

A030998
A378331
A378348
8 C8 0.12345671011121314151617202122232425262730313233343536374041424344454647505152535455565760616263646 ... 8

0.163264812105216797367094986142605190224237843285462333081380700428319475...10
{0, 6, 7, 1, 842, 5, 11, 2, 1, 4, 1, 12, 1217611913245203113561611289624720261608646275831638269345353220034950193075766082779756144, 39, 1, 13, 19, 1, 1, 2, 1, 6, 1, 4, 9, 1, 2, 1, 3, 2, 1, 223, 2, 1, ...}

A054634
A378332
A378349
9 C9 0.123456781011121314151617182021222324252627283031323334353637384041424344454647485051525354... 9

0.140624976119696782479669008935663183265457083246828486657555171275414914...10
{0, 7, 8, 1, 10222, 1, 1, 1, 1, 1, 12, 1, 1, 1, 145, 1, 13127841267973253934598674824559230051317913195904874825561053745645554655306632773083671838234108227370808367172269493508107, 1, 7, 3, 1, 1, 1, 2, 2, 15, 3, 2, 1, 3, 2, 1, 1, 7, 4, 1, 4, 1, 1, 3, 3, 1, 1, ...}

A031076
A378333
A378350
10 C10 0.123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475...10

0.123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475...10
{0, 8, 9, 1, 149083, 1, 1, 1, 4, 1, 1, 1, 3, 4, 1, 1, 1, 15, ...}

A033307
A033307
A030167