|
|
A030190
|
|
Binary Champernowne sequence (or word): write the numbers 0,1,2,3,4,... in base 2 and juxtapose.
|
|
62
|
|
|
0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(A003607(n)) = 0 and for n > 0: a(A030303(n)) = 1. - Reinhard Zumkeller, Dec 11 2011
An irregular table in which the n-th row lists the bits of n (see the example section). - Jason Kimberley, Dec 07 2012
The binary Champernowne constant: it is normal in base 2. - Jason Kimberley, Dec 07 2012
This is the characteristic function of A030303, which gives the indices of 1's in this sequence and has first differences given by A066099. - M. F. Hasler, Oct 12 2020
|
|
REFERENCES
|
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Jean Berstel, Home Page (in case the following link should be broken)
Jean Berstel and Juhani Karhumäki, Combinatorics on words-a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, # 79, pp. 178-228, 2003.
S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math., 206 (1999), 145-154.
Eric Weisstein's World of Mathematics, Binary Champernowne Constant
|
|
EXAMPLE
|
As an array, this begins:
0,
1,
1, 0,
1, 1,
1, 0, 0,
1, 0, 1,
1, 1, 0,
1, 1, 1,
1, 0, 0, 0,
1, 0, 0, 1,
1, 0, 1, 0,
1, 0, 1, 1,
1, 1, 0, 0,
1, 1, 0, 1,
1, 1, 1, 0,
1, 1, 1, 1,
1, 0, 0, 0, 0,
1, 0, 0, 0, 1,
...
|
|
MATHEMATICA
|
Flatten[ Table[ IntegerDigits[n, 2], {n, 0, 26}]] (* Robert G. Wilson v Mar 08 2005 *)
almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 2] &, 105, 0] (* Robert G. Wilson v, Jun 28 2014 *)
|
|
PROG
|
(Haskell)
import Data.List (unfoldr)
a030190 n = a030190_list !! n
a030190_list = concatMap reverse a030308_tabf
-- Reinhard Zumkeller, Jun 16 2012, Dec 11 2011
(MAGMA) [0]cat &cat[Reverse(IntegerToSequence(n, 2)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
(PARI) A030190_row(n)=if(n, binary(n), [0]) \\ M. F. Hasler, Oct 12 2020
|
|
CROSSREFS
|
Cf. A007376, A003137, A030308. Same as and more fundamental than A030302, but I have left A030302 in the OEIS because there are several sequences that are based on it (A030303 etc.). - N. J. A. Sloane.
a(n) = T(A030530(n), A083652(A030530(n))-n-1), T as defined in A083651, a(A083652(k))=1.
Tables in which the n-th row lists the base b digits of n: this sequence and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
A076478 is a similar sequence.
For run lengths see A056062; see also A318924.
See also A066099 for (run lengths of 0s) + 1 = first difference of positions of 1s given by A030303.
Sequence in context: A014578 A323153 A288861 * A157658 A296211 A341642
Adjacent sequences: A030187 A030188 A030189 * A030191 A030192 A030193
|
|
KEYWORD
|
nonn,base,cons,easy,tabf
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|