login
A318924
In the binary Champernowne word A030190, shorten each run of consecutive identical bits by one bit.
3
1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
OFFSET
0
COMMENTS
In other words, apply the transformation A318921 to the infinite word A030190.
LINKS
EXAMPLE
Start with A030190:
011011100101110111100010011010101111001101111011111000010001100101001110...
then shorten each run by 1 bit (x indicates bits to be deleted):
x1xx11x0xxx11xx111x00xx0x1xxxxxx111x0x1xx111xx1111x000xx00x1x0xxxx0x11xx...
and after deleting the x's we get the new sequence:
111011111000111101111111100000100110111111001011...
PROG
(PARI) p=-1; k=0; for (n=0, oo, my (b=if (n==0, [0], binary(n))); for (i=1, #b, if (p==b[i], print1 (p ", "); if (k++==87, break (2)), p=b[i]))) \\ Rémy Sigrist, Sep 09 2018
CROSSREFS
A056062 shows lengths of runs before they are shortened.
Sequence in context: A287769 A267866 A175087 * A356162 A253414 A127872
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Sep 09 2018
EXTENSIONS
More terms from Rémy Sigrist, Sep 09 2018
STATUS
approved