login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318924 In the binary Champernowne word A030190, shorten each run of consecutive identical bits by one bit. 3
1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

COMMENTS

In other words, apply the transformation A318921 to the infinite word A030190.

LINKS

Rémy Sigrist, Table of n, a(n) for n = 0..25000

EXAMPLE

Start with A030190:

011011100101110111100010011010101111001101111011111000010001100101001110...

then shorten each run by 1 bit (x indicates bits to be deleted):

x1xx11x0xxx11xx111x00xx0x1xxxxxx111x0x1xx111xx1111x000xx00x1x0xxxx0x11xx...

and after deleting the x's we get the new sequence:

111011111000111101111111100000100110111111001011...

PROG

(PARI) p=-1; k=0; for (n=0, oo, my (b=if (n==0, [0], binary(n))); for (i=1, #b, if (p==b[i], print1 (p ", "); if (k++==87, break (2)), p=b[i]))) \\ Rémy Sigrist, Sep 09 2018

CROSSREFS

Cf. A030190, A318921.

A056062 shows lengths of runs before they are shortened.

Sequence in context: A287769 A267866 A175087 * A253414 A127872 A129564

Adjacent sequences:  A318921 A318922 A318923 * A318925 A318926 A318927

KEYWORD

nonn,base

AUTHOR

N. J. A. Sloane, Sep 09 2018

EXTENSIONS

More terms from Rémy Sigrist, Sep 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 08:18 EST 2019. Contains 329093 sequences. (Running on oeis4.)